首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular RNAs (circRNAs) are a class of novel, widespread, covalently closed RNAs that have played an essential role in animal gene regulation. To systematically explore circRNAs in the blood fluke Schistosoma japonicum, we performed RNA sequencing and bioinformatics analysis, and found that hundreds of circRNAs showed gender-associated expression. Among these identified circRNAs, more than 77.54% and 74.73% were putatively derived from the exon region of the genome and some circRNAs showed gender-associated expressions. The functional prediction of circRNAs (circ_003826 and circ_004690) showed potential binding sites and possibly acted as the sponge to regulate microRNAs (miRNAs) sja-miR-1, sja-miR-133 and sja-miR-3504. Altogether, these findings demonstrated that S. japonicum also contains circRNAs, which may have potential regulatory roles during schistosome development.  相似文献   

2.
3.
In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols.  相似文献   

4.
在1976年就已经发现RNA可以具有环形形式。但是长期以来对环形RNA(circRNAs)主要是作为一些特例加以研究。随着高通量RNA测序技术以及生物信息学的发展,近几年的研究发现circRNAs在真核生物中普遍存在,并且具有一定的保守性和细胞特异性。越来越多的证据指明circRNAs不是剪切噪音,而是具有一定生物学功能,可能与一系列调控甚至疾病的发生和发展相关。  相似文献   

5.
6.
7.
Circular RNAs (circRNAs) are a novel group of endogenous RNAs with a circular structure. Growing evidence indicates that circRNAs are involved in a variety of human diseases including malignancies. CircRNA ZNF609 (circ-ZNF609), derived from the ZNF609 gene sequence, has been demonstrated to be involved in the development and progression of many diseases. circ-ZNF609 is thought to be a viable diagnostic and prognostic biomarker for several diseases and might be a new therapeutic target, but further research is needed to accelerate clinical application. Here, we review the biogenesis and function of circRNAs and the functional roles and molecular mechanism related to circ-ZNF609 in neoplasms and other diseases.  相似文献   

8.
Circular RNAs (circRNAs) are a group of covalently closed, endogenous, non-coding RNAs, which exist widely in human tissues including the heart. Increasing evidence has shown that cardiac circRNAs play crucial regulatory roles in cardiovascular diseases (CVDs). In this review, we aimed to provide a systemic understanding of circRNAs with a special emphasis on the cardiovascular system. We have summarized the current research on the classification, biogenesis and properties of circRNAs as well as their participation in the pathogenesis of CVDs. CircRNAs are conserved, stable and have specific spatiotemporal expression; thus, they have been accepted as a potential diagnostic marker or an incremental prognostic biomarker for CVDs.  相似文献   

9.
近年来,随着RNA研究技术的进步,研究者们在多种生物中发现了数量众多的环状RNA,且发现它们具有重要的生物学功能。环状RNA来源于内含子或外显子,可以充当微小RNA海绵,还能与蛋白质相结合,从而参与基因表达调控并影响蛋白质的功能,此外,个别环状RNA甚至能编码蛋白质。更重要的是,环状RNA在肿瘤(如:胃癌、肝癌、结直肠癌、乳腺癌、宫颈癌和卵巢癌等)的发生和发展过程中起着重要的调控作用。因此,环状RNA有希望成为肿瘤诊断的标志物和治疗的新靶点。  相似文献   

10.
Xiao Chen  Wei Shi  Chao Chen 《Genomics》2019,111(4):598-606
Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. The mechanism and function of circRNAs have been reported in some species. However, little is known regarding circRNAs in honey bees. In this study, we analyzed circRNAs through bioinformatics, and predicted 12,211 circRNAs in the ovary of honey bee queens. 1340, 175 and 100 circRNAs were differentially expressed in comparisons of egg-laying queens vs virgin queens, egg-laying inhibited queens vs egg-laying queens and egg-laying recovery queens vs egg-laying inhibited queens. Further, functional annotation of differentially expressed circRNAs revealed several pathways that are closely related to ovary activation and oviposition, including insulin secretion and calcium signaling pathways. Moreover, the potential interactions among circRNAs, miRNAs, lncRNAs and mRNAs were investigated. Ame_circ_0005197 and ame_circ_0016640 were observed to sponge several reproductive related miRNAs. These findings demonstrate that circRNAs have potential effects in ovary activation and oviposition of honey bees.  相似文献   

11.
At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.  相似文献   

12.
Most circular RNAs (circRNAs) belong to a novel class of noncoding RNAs that are produced by back-splicing reactions, and they regulate physiological and pathophysiological processes in human disease. Although circRNA expression has been shown to be altered in the ischemic cerebral tissue in animal studies, the expression profile of circRNA in the patients with acute ischemic stroke (AIS) has not been investigated to date. In this investigation, high-throughput sequencing was carried out to compare the circRNA expression of peripheral blood mononuclear cells (PBMCs) from five patients with AIS and five healthy subjects. A total of 521 circRNAs were expressed differentially between the patients with AIS and healthy controls (p < .05, fold difference ≥2) including 373 upregulated circRNAs and 148 downregulated circRNAs in patients with AIS compared to controls. Thirteen candidate circRNAs were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics analyses showed that these differentially expressed circRNAs were highly conserved, as well as eight circRNAs that were confirmed by qRT-PCR containing binding sites to multiple microRNAs. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and gene ontology analyses indicated that the aberrantly expressed circRNAs participated in many pathophysiological processes of AIS, especially regarding inflammation and immunity. In conclusion, patients with AIS differentially express certain circRNAs in PBMCs, which may be diagnostic biomarkers or potential therapeutic targets.  相似文献   

13.
14.
环状RNA(circular RNA,circRNA)是一类闭合环状的内源RNA分子,广泛存在于不同物种及多种人体细胞中,具有丰富性、稳定性和组织特异性等特点。人体细胞中的circRNA主要可分为外显子circRNA、环状内含子RNA和外显子-内含子circRNA等。与正常组织相比,circRNA在多种肿瘤组织中异常表达,并具有作为微小RNA(microRNA,miRNA)海绵调控miRNA、结合蛋白质、参与翻译等功能。虽然circRNA在肿瘤中异常表达的具体机制尚不明确,但其在食管鳞状细胞癌、胃癌、结直肠癌、肝细胞癌、神经胶质瘤等多种肿瘤发生、发展的分子通路中具有重要作用,并有望成为全新的肿瘤标志物和治疗靶点。circRNA领域的发展日新月异,本文根据最新研究报道,就circRNA的基本特征、异常表达机制、调控肿瘤的机制及其在多种肿瘤中发挥的作用作一综述。  相似文献   

15.
16.
Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that form covalently closed continuous loops without 3′ end poly (A) tails and 5′ end caps. circRNAs are more conservative and stable than linear RNA. circRNAs can specifically bind to microRNAs as competing endogenous RNA, thereby directly or indirectly regulating the expression of related genes. circRNAs have been implicated in several cancers including gastrointestinal (GI) cancers. Some circRNAs have the potential to become biological biomarkers and therapeutic targets of GI cancers. However, the multiple functional roles of circRNAs in GI cancers remain largely unclear.  相似文献   

17.
18.
19.
20.
Circular RNAs (circRNAs) are covalently closed RNA molecules generated from precursor RNAs by the head-to-tail backsplicing of exons. Hundreds of studies demonstrated that circRNAs are ubiquitously expressed and regulate cellular events by modulating microRNA (miRNA) and RNA-binding protein (RBP) activities. A few circRNAs are also known to translate into functional polypeptides regulating cellular physiology. All these functions primarily depend on the full-length sequence of the circRNAs. CircRNA backsplice junction sequence is the key to identifying circRNAs and their full-length mature sequence. However, some multi-exonic circRNAs exist in different isoforms sharing identical backsplice junction sequences and are termed circRNA splice variants. Here, we analyzed the previously published HeLa cell RNA-seq datasets to identify circRNA splice variants using the de novo module of the CIRCexplorer2 circRNA annotation pipeline. A subset of circRNAs with splice variants was validated by the circRNA-rolling circle amplification (circRNA-RCA) method. Interestingly, several validated circRNAs were predicted to translate into proteins by the riboCIRC database. Furthermore, polyribosome fractionation followed by quantitative PCR confirmed the association of a subset of circRNAs with polyribosome supporting their protein-coding potential. Finally, bioinformatics analysis of proteins derived from splice variants of circCORO1C and circASPH suggested altered protein sequences and structures that could affect their physiological functions. Together, our study identified novel circRNA splice variants and their potential translation into protein isoforms which may regulate various physiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号