首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Protein import into mitochondria is initiated by the recognition and binding of precursor proteins by import components in the cytosol, on the mitochondrial surface, and in the mitochondrial outer membrane. Following their synthesis on cytoplasmic ribosomes, some precursor proteins interact with molecular chaperones in the cytosol which function in maintaining the precursor protein in an import-competent state and may also aid in the delivery of the precursor to the mitochondria. A multisubunit protein import receptor then recognises and binds precursor proteins before feeding them into the outer membrane import site. Some proteins are sorted from the import site into the outer membrane, but most precursor proteins travel through the outer membrane import site into the mitochondria, where the later steps of protein import take place.  相似文献   

3.
Molecular Chaperones and Mitochondrial Protein Folding   总被引:7,自引:0,他引:7  
Precursor proteins destined for the mitochondrial matrix traverse inner and outer organelle membranes in an extended conformation. Translocation events are therefore integrally coupled to the processes of protein unfolding in the cytosol and protein refolding in the matrix. To successfully import proteins from the cytoplasm into mitochondria, cells have recruited a variety of molecular chaperone systems and folding catalysts. Within the organelles, mitochondrial Hsp70 (mt-Hsp70) is a major player in this process and exerts multiple functions. First, mt-Hsp70 binds together with cohort proteins to incoming polypeptide chains, thus conferring unidirectionality on the translocation process, and then assists in their refolding. A subset of imported proteins requires additional assistance by chaperonins of the Hsp60/Hsp10 family. Protein folding occurs within the cavity of these cylindrical complexes. A productive interaction of precursor proteins with molecular chaperones in the matrix is not only crucial for correct refolding and assembly, but also for processing of presequences, intramitochondrial sorting, and degradation of proteins. This review focuses on the role of mt-Hsp70 and Hsp60/Hsp10 in protein folding in the mitochondrial matrix and discusses recent findings on their molecular mechanism of action.  相似文献   

4.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

5.
赵燕  周俭民 《植物学报》2020,55(1):69-75
蛋白质-蛋白质相互作用在真核生物的各项生命活动中发挥重要作用。与其它蛋白质互作研究技术相比,借助于烟草(Nicotiana benthamiana)瞬时表达系统的萤火素酶互补实验(LCA)具有简单、灵敏、可靠、高效和低背景等优点,并可轻松扩展为大规模蛋白质互作的筛选和验证研究。该文介绍了萤火素酶互补实验的具体操作过程,通过2种数据收集方法来定性并定量分析生物发光或发光强度,从而检测植物目标蛋白之间的相互作用。  相似文献   

6.
All but a small fraction of the hundreds of proteins in a mitochondrion are synthesized in thecytoplasm and imported into the organelle. Water-filled channels are integral to the process oftranslocating proteins since channels can provide an aqueous pathway through the hydrophobicenvironment of the membrane. The MCC (multiple conductance channel) and PSC(peptide-sensitive channel) are two high-conductance channels previously identified inelectrophysiological studies of mitochondrial membranes. MCC and PSC are the putative pores of the importcomplexes of the inner and outer membranes, respectively. The genetic, biochemical, andbiophysical evidence regarding these assignments are summarized herein. These findingssupport the identification of MCC and PSC as the protein import channels of mitochondria.  相似文献   

7.
The requirements for protein import into mitochondria was investigated by using the targeting signal of the F(A)d subunit of soybean mitochondrial ATP synthase attached to two different passenger proteins, its native passenger and soybean alternative oxidase. Both passenger proteins are soybean mitochondrial proteins. Changing hydrophobic residues at positions -24:25 (Phe:Leu), -18:19 (Ile:Leu) and -12:13 (Leu:Ile) of the 31 amino acid cleavable presequence gave more than 50% inhibition of import with both passenger proteins. Some other residues in the targeting signal played a more significant role in targeting of one passenger protein compared to another. Notably changing positive residues (Arg, Lys) had a greater inhibitory affect on import with the native passenger protein, i.e. greater inhibition of import with F(A)d mature protein was observed compared to when alternative oxidase was the mature protein. When using chimeric passenger proteins it was shown that the nature of the mature protein can greatly affect the targeting properties of the presequence. In vivo investigations of the targeting presequence indicated that the presequence of 31 amino acids could not support import of GFP as a passenger protein. However, fusion of the full-length F(A)d coding sequence to GFP did result in mitochondrial localisation of GFP. Using the latter fusion we confirmed the critical role of hydrophobic residues at positions -24:25 and -18:19. These results support the proposal that core mitochondrial targeting features exist in all presequences, but that additional features exist. These features may not be evident with all passenger proteins.  相似文献   

8.
9.
A redox-regulated import pathway consisting of Mia40 and Erv1 mediates the import of cysteine-rich proteins into the mitochondrial intermembrane space. Mia40 is the oxidoreductase that inserts two disulfide bonds into the substrate simultaneously. However, Mia40 has one redox-active cysteine pair, resulting in ambiguity about how Mia40 accepts numerous electrons during substrate oxidation. In this study, we have addressed the oxidation of Tim13 in vitro and in organello. Reductants such as glutathione and ascorbate inhibited both the oxidation of the substrate Tim13 in vitro and the import of Tim13 and Cmc1 into isolated mitochondria. In addition, a ternary complex consisting of Erv1, Mia40, and substrate, linked by disulfide bonds, was not detected in vitro. Instead, Mia40 accepted six electrons from substrates, and this fully reduced Mia40 was sensitive to protease, indicative of conformational changes in the structure. Mia40 in mitochondria from the erv1–101 mutant was also trapped in a completely reduced state, demonstrating that Mia40 can accept up to six electrons as substrates are imported. Therefore, these studies support that Mia40 functions as an electron sink to facilitate the insertion of two disulfide bonds into substrates.  相似文献   

10.
《Current biology : CB》2020,30(5):840-853.e5
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
为了在哺乳动物细胞中建立一套用于研究蛋白分子转录激活活性的系统,首先以质粒pTe-Off和真核表达载体pCDNA3.1B(-)/myc-his为基础,分别构建重组质粒pZHO1(用于插入待测基因并作为该系统的阴性对照),pZHO2(用于作阳性对照),此外,该系统还包括质粒pTRE-luc(编码Firefly荧光素酶报道基因)和质粒pRL-TK(编码Renilla荧光素酶基因,用作内参对照),为验证该系统的可行性,分别将质粒pZHO1,pZHO2,pZHO3(编码p53分子N端转灵激活区73个氨基酸片段,作为实验组)与质粒pTRE-luc和pRL-TK共轨染至C4-2,MCF-7,COS7 3种不同的细胞株中,通过检测各转染组细胞中Firefly荧光素酶相对活性的大小来判断该系统的可行性,结果表明,所构建的系统可以在哺乳动物细胞中检测目的分子的转录激活活性。  相似文献   

14.
During protein import into chloroplasts, one of the Hsp70 proteins in pea (Hsp70-IAP), previously reported to localize in the intermembrane space of chloroplasts, was found to interact with the translocating precursor protein but the gene for Hsp70-IAP has not been identified yet. In an attempt to identify the Arabidopsis homolog of Hsp70-IAP, we employed an in vitro protein import assay to determine the localization of three Arabidopsis Hsp70 homologs (AtHsp70-6 through 8), predicted for chloroplast targeting. AtHsp70-6 and AtHsp70-7 were imported into chloroplasts and processed into similar-sized mature forms. In addition, a smaller-sized processed form of AtHsp70-6 was observed. All the processed forms of both AtHsp70 proteins were localized in the stroma. Organelle-free processing assays revealed that the larger processed forms of both AtHsp70-6 and AtHsp70-7 were cleaved by stromal processing peptidase, whereas the smaller processed form of AtHsp70-6 was produced by an unspecified peptidase.  相似文献   

15.
线粒体未折叠蛋白反应(UPR~(mt))作为新发现的细胞内应激机制,直接影响老化、神经退行性疾病、癌症等疾病的发生发展.UPR~(mt)是线粒体为了维持其内部蛋白质的平衡,启动由核DNA编码的线粒体热休克蛋白和蛋白酶等基因群转录活化程序的应激反应.深入探究UPR~(mt)的作用机制对阐明老化和线粒体相关疾病的发病机理具有指导意义.本文主要阐述了线粒体未折叠蛋白反应的诱导因素、线虫和哺乳动物细胞中最新的未折叠蛋白应激反应的信号传导通路、调控因子、具体作用机制以及线粒体未折叠蛋白反应与衰老、免疫等疾病的联系,旨在为这些疾病提供新的理论基础和治疗靶点.  相似文献   

16.
邻位连接技术(proximity ligation assay,PLA),是新研发的一项高灵敏度的蛋白质体外分析技术。该方法利用一对邻位探针(proximity probes)对靶分子进行双识别,通过连接反应产生可扩增的检测信号,以实时 PCR进行放大和检测,将对蛋白质的检测转变成为对DNA的检测,实现痕量蛋白的分析,具有极高的检测灵敏度和特异性。综述了邻位连接技术的原理、研究进展以及该技术在蛋白质分析及疾病诊断领域的初步应用。  相似文献   

17.
AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.  相似文献   

18.
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677–1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.  相似文献   

19.
Protein conformational disorders are characterized by disruption of protein folding and toxic accumulation of protein aggregates. Here we describe a sensitive and simple method to follow and monitor general protein aggregation in human cells. Heat shock protein 27 (HSP27) is an oligomeric small heat shock protein that binds and keeps unfolded proteins in a folding competent state. This high specificity of HSP27 for aggregated proteins can be explored to monitor aggregation in living cells by fusing it to a fluorescent protein as Green Fluorescent Protein (GFP). We have constructed a HeLa stable cell line expressing a HSP27:GFP chimeric reporter protein and after validation, this stable cell line is exposed to different agents that interfere with proteostasis, namely Arsenite, MG132, and Aβ‐peptide. Exposure to proteome destabilizers lead to re‐localization of HSP27:GFP fluorescence to foci, confirming that our reporter system is functional and can be used to detect and follow protein aggregation in living cells. This reporter is a valuable tool to setup wide‐genetic screens to identify genes and pathways involved in protein misfolding and aggregation.  相似文献   

20.
SUMO-interacting motifs (SIMs) play a central role in the fate of SUMO-modified proteins. Here we report a real-time SUMO-binding assay. It can be applied to the identification of SIMs and to screening for the identification of novel SUMO-binding proteins. Using this assay, we investigated the SIMs in SETDB1 and MCAF1 to gain insight into the assembly of SETDB1-MCAF1-mediated gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号