首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mad2 and p31(comet) are components of the spindle assembly checkpoint which controls the fidelity of chromosome segregation. Two recent structural studies reveal new insight into how these proteins achieve this difficult task.  相似文献   

3.
4.
Through alternate splicing, the Ikaros gene produces multiple proteins. Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity. Ikaros isoforms interact to form dimers and potentially multimeric complexes. Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions. Small dominant-negative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros. Here, we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H. Although IK-1 is described as full-length Ikaros, IK-H is the longest Ikaros isoform. IK-H, which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4), is abundant in human but not murine hematopoietic cells. Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1. Moreover, IK-H can potentiate or inhibit the ability of IK-1 to bind DNA. IK-H binds to the regulatory regions of genes that are upregulated by Ikaros, but not genes that are repressed by Ikaros. Although IK-1 localizes to pericentromeric heterochromatin, IK-H can be found in both pericentromeric and non-pericentromeric locations. Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H, but not other Ikaros isoforms. The unique features of IK-H, its influence on Ikaros activity, and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.  相似文献   

5.
Function, Phylogeny and Fossils: Miocene Hominoid Evolution and Adaptations Begun, DG, Ward, CV, Rose, MD eds. (1997). New York: Plenum Press. xii + 424 pp. ISBN 0-306-45457-2. $120.00 (cloth). The Evolution of Western Eurasian Neogene Mammal Faunas Bernor, RL, Fahlbusch, V, Mittman, H (eds). (1996). New York: Columbia University Press. ix + 487 pp. ISBN 0-231-08246-0. $92.00 (cloth). © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
9.
10.
Growth-promoting and nutrient/mitogen-sensing pathways such as mTOR convert p21- and p16-induced arrest into senescence (geroconversion). We have recently demonstrated that hypoxia, especially near-anoxia, suppresses geroconversion. This gerosuppressive effect of hypoxia correlated with inhibition of the mTOR/S6K pathway but not with modulation of the LKB1/AMPK/eEF2 pathway. Here we further show that mTOR inhibition is required for gerosuppression by hypoxia, at least in some cellular models, because depletion of TSC2 abolished mTOR inhibition and gerosupression by hypoxia. Also, in two cancer cell lines resistant to inhibition of mTOR by both p53 and hypoxia, hypoxia did not suppress geroconversion. Therefore, the effects of hypoxia on the oxygen-sensing mTOR pathway and geroconversion are cell type-specific. We also briefly discuss replicative senescence, organismal aging and free radical theory.  相似文献   

11.
On March 27, 2008, the American Thyroid Association sponsored a research summit on the Thyroid and Metabolism. The goals of the summit were to explore emerging new concepts and potential therapies arising from recent insights into the action of thyroid hormone signaling. New advances have identified functions previously thought to be distinct from thyroid hormone signaling pathways and suggest new avenues of therapy for metabolic disease.  相似文献   

12.
Growth-promoting and nutrient/mitogen-sensing pathways such as mTOR convert p21- and p16-induced arrest into senescence (geroconversion). We have recently demonstrated that hypoxia, especially near-anoxia, suppresses geroconversion. This gerosuppressive effect of hypoxia correlated with inhibition of the mTOR/S6K pathway but not with modulation of the LKB1/AMPK/eEF2 pathway. Here we further show that mTOR inhibition is required for gerosuppression by hypoxia, at least in some cellular models, because depletion of TSC2 abolished mTOR inhibition and gerosupression by hypoxia. Also, in two cancer cell lines resistant to inhibition of mTOR by both p53 and hypoxia, hypoxia did not suppress geroconversion. Therefore, the effects of hypoxia on the oxygen-sensing mTOR pathway and geroconversion are cell type-specific. We also briefly discuss replicative senescence, organismal aging and free radical theory.  相似文献   

13.
14.
Presence of benzimidazole nucleus in numerous categories of therapeutic agents such as antimicrobials, antivirals, antiparasites, anticancer, anti-inflammatory, antioxidants, proton pump inhibitors, antihypertensives, anticoagulants, immunomodulators, hormone modulators, CNS stimulants as well as depressants, lipid level modulators, antidiabetics, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substitutents around the benzimidazole nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, Angiotensin I (AT1) receptor antagonism and proton-pump inhibition is reviewed separately in literature. Even some very short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing benzimidazole nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of benzimidazole nucleus in medicinal chemistry research. In the present review, various derivatives of benzimidazole with different pharmacological activities are described on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole derived compounds for each activity. This discussion will further help in the development of novel benzimidazole compounds.  相似文献   

15.
16.
17.
18.
The journey of squid sperm   总被引:1,自引:0,他引:1  
Sperm storage is common in internally fertilizing animals, but is also present in several external fertilizers, such as many cephalopods. Cephalopod males attach sperm packets (spermatangia) to female conspecifics during mating. Females of eight externally fertilizing families comprising 25% of cephalopod biodiversity have sperm-storage organs (seminal receptacles) in their buccal area, which are not in direct physical contact with the deposited spermatangia. The mechanism of sperm transmission between the implantation site and the storage organ has remained a major mystery in cephalopod reproductive biology. Here, jumbo squid females covering almost the entire life cycle, from immature to a laboratory spawned female, were used to describe the internal structure of the seminal receptacles and the process of sperm storage. Seminal fluid was present between the spermatangia and seminal receptacles, but absent in regions devoid of seminal receptacles. The sperm cellular component was formed by spermatozoa and round cells. Although spermatozoa were tracked over the buccal membrane of the females to the inner chambers of the seminal receptacles, round cells were not found inside the seminal receptacles, suggesting that spermatozoa are not sucked up by the muscular action of the seminal receptacles. This finding supports the hypothesis that spermatozoa are able to actively migrate over the female skin. Although further experimental support is needed to fully confirm this hypothesis, our findings shed light on the elusive process of sperm storage in many cephalopods, a process that is fundamental for understanding sexual selection in the sea.  相似文献   

19.
Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell''s terminology, become ever more complicated—more chemical and less physical—as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life''s mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients—involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors—were imposed which functioned as the original ‘carbon-fixing engine’. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: ‘the pyrophosphatase engine’.  相似文献   

20.
Sporozoites are the most versatile of the invasive stages of the Plasmodium life cycle. During their passage within the mosquito vector and the vertebrate host, sporozoites display diverse behaviors, including gliding locomotion and invasion of, migration through and egress from target cells. At the end of the journey, sporozoites invade hepatocytes and transform into exoerythrocytic stages, marking the transition from the pre-erythrocytic to the erythrocytic part of the life cycle. This article discusses recent work, mostly done with rodent malaria parasites, that has contributed to a better understanding of the sporozoites' complex biology and which has opened up new avenues for future sporozoite research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号