首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.  相似文献   

2.
Chen Z  Zhang J  Kong J  Li S  Fu Y  Li S  Zhang H  Li Y  Zhu Y 《Genetica》2006,128(1-3):21-31
Small non-coding RNAs play important roles in regulating cell functions by controlling mRNA turnover and translational repression in eukaryotic cells. Here we isolated 162 endogenous small RNA molecules from Oryza sativa, which ranged from 16 to 35 nt in length. Further analysis indicated that they represented a diversity of small RNA molecules, including 17 microRNAs (miRNAs), 30 tiny non-coding RNAs (tncRNAs) and 20 repeat-associated small interfering RNAs (rasiRNAs). Among 17 miRNAs, 13 were novel miRNA candidates and their potential targets were important regulatory genes in the rice genome. We also found that a cluster of small RNAs, including many rasiRNAs, matched to a nuclear DNA fragment that evolutionarily derived from chloroplast. These results demonstrate clearly the existence of distinct types of small RNAs in rice and further suggest that small RNAs may control gene regulation through diverse mechanisms.  相似文献   

3.
Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were downregulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.  相似文献   

4.
Evidence is accumulating that small, noncoding RNAs are important regulatory molecules. Computational and experimental searches have led to the identification of ~60 small RNA genes in Escherichia coli. However, most of these studies focused on the intergenic regions and assumed that small RNAs were >50 nt. Thus, the previous screens missed small RNAs encoded on the antisense strand of protein-coding genes and small RNAs of <50 nt. To identify additional small RNAs, we carried out a cloning-based screen focused on RNAs of 30–65 nt. In this screen, we identified RNA species corresponding to fragments of rRNAs, tRNAs and known small RNAs. Several of the small RNAs also corresponded to 5′- and 3′-untranslated regions (UTRs) and internal fragments of mRNAs. Four of the 3′-UTR-derived RNAs were highly abundant and two showed expression patterns that differed from the corresponding mRNAs, suggesting independent functions for the 3′-UTR-derived small RNAs. We also detected three previously unidentified RNAs encoded in intergenic regions and RNAs from the long direct repeat and hok/sok elements. In addition, we identified a few small RNAs that are expressed opposite protein-coding genes and could base pair with 5′ or 3′ ends of the mRNAs with perfect complementarity.  相似文献   

5.
Small nucleolar RNAs (snoRNAs) guide RNA modification and are localized in nucleoli and Cajal bodies in eukaryotic cells. Components of the RNA silencing pathway associate with these structures, and two recent reports have revealed that a human and a protozoan snoRNA can be processed into miRNA-like RNAs. Here we show that small RNAs with evolutionary conservation of size and position are derived from the vast majority of snoRNA loci in animals (human, mouse, chicken, fruit fly), Arabidopsis, and fission yeast. In animals, sno-derived RNAs (sdRNAs) from H/ACA snoRNAs are predominantly 20–24 nucleotides (nt) in length and originate from the 3′ end. Those derived from C/D snoRNAs show a bimodal size distribution at ∼17–19 nt and >27 nt and predominantly originate from the 5′ end. SdRNAs are associated with AGO7 in Arabidopsis and Ago1 in fission yeast with characteristic 5′ nucleotide biases and show altered expression patterns in fly loquacious and Dicer-2 and mouse Dicer1 and Dgcr8 mutants. These findings indicate that there is interplay between the RNA silencing and snoRNA-mediated RNA processing systems, and that sdRNAs comprise a novel and ancient class of small RNAs in eukaryotes.  相似文献   

6.
Protein binding is essential to the transport,decay and regulation of almost all RNA molecules.However,the structural preference of protein binding on RNAs and their cellular functions and dynamics upon changing environmental conditions are poorly understood.Here,we integrated various high-throughput data and introduced a computational framework to describe the global interactions between RNA binding proteins(RBPs)and structured RNAs in yeast at single-nucleotide resolution.We found that on average,in terms of percent total lengths,~15%of mRNA untranslated regions(UTRs),~37%of canonical non-coding RNAs(ncRNAs)and~11%of long ncRNAs(lncRNAs)are bound by proteins.The RBP binding sites,in general,tend to occur at single-stranded loops,with evolutionarily conserved signatures,and often facilitate a specific RNA structure conformation in vivo.We found that four nucleotide modifications of tRNA are significantly associated with RBP binding.We also identified various structural motifs bound by RBPs in the UTRs of mRNAs,associated with localization,degradation and stress responses.Moreover,we identified>200 novel lncRNAs bound by RBPs,and about half of them contain conserved secondary structures.We present the first ensemble pattern of RBP binding sites in the structured non-coding regions of a eukaryotic genome,emphasizing their structural context and cellular functions.  相似文献   

7.
8.
非编码RNA与基因表达调控   总被引:1,自引:0,他引:1  
近年来,随着对基因组的深入研究,发现真核生物中存在许多形态和功能各异的非编码RNA分子,这类RNA分子并不表达蛋白质,但它们在基因转录水平、转录后水平及翻译水平起了重要的调控作用。具有调控作用的RNA分子种类非常丰富,如长链非编码RNA(long non-coding RNA,lncRNA)、miRNA、PIWI相互作用RNA(PIWI-interacting RNA,piRNA)、内源性小干扰RNA(endogenous small interfering RNA,endo-siRNA)、竞争性内源RNA(competitive endogenous RNA,ceRNA)等,它们使基因表达过程更为丰富、严谨和有序。本文综述几类典型的非编码RNA对基因表达的调节作用,以助于理解细胞中RNA分子调节网络的功能和机制。  相似文献   

9.
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.  相似文献   

10.
11.
《FEBS letters》2014,588(23):4297-4304
Transfer RNA (tRNA) is traditionally considered to be an adaptor molecule that helps ribosomes to decode messenger RNA (mRNA) and synthesize protein. Recent studies have demonstrated that tRNAs also serve as a major source of small non-coding RNAs that possess distinct and varied functions. These tRNA fragments are heterogeneous in size, nucleotide composition, biogenesis and function. Here we describe multiple roles that tRNA fragments play in cell physiology and discuss their relevance to human health and disease.  相似文献   

12.
13.
14.
15.
长非编码RNA(lncRNA)是一类转录本长度大于200个核苷酸的非编码RNA分子,它们在细胞生命活动中的许多关键过程中起到重要调控作用。近年来关于lncRNA的研究发展迅速,涌现出一批用于lncRNA的鉴定、定量、结构分析以及功能预测的生物信息学工具和数据库,本文将对这些lncRNA研究的资源进行综述。  相似文献   

16.
李静秋  杨杰  周平  乐燕萍  龚朝辉 《遗传》2015,37(8):756-764
最新研究表明,RNA之间可以通过竞争结合共同的microRNA反应元件(microRNA response element, MRE)实现相互调节,这种调控模式构成竞争性内源RNA(Competing endogenous RNA, ceRNA)。已发现的ceRNA包括蛋白编码mRNA和非编码RNA,其中后者包括假基因转录物、长链非编码RNA(Long non-coding RNA, lncRNA)、环状RNA(Circular RNA, circRNA)等。文章主要从ceRNA分类的角度,阐述各类ceRNA构成的调控网络发挥的生物学功能在病理和生理相关过程中的作用,以及可能影响ceRNA调控有效性的因素。  相似文献   

17.
18.
Beyond the proteome: non-coding regulatory RNAs   总被引:3,自引:0,他引:3       下载免费PDF全文
Szymański M  Barciszewski J 《Genome biology》2002,3(5):reviews0005.1-reviews00058
  相似文献   

19.
武亮  戚益军 《植物学报》2020,55(3):270-273
RNA是传递生命遗传信息的重要介质。依据RNA是否编码蛋白质, 可分为编码RNA和非编码RNA。作为非编码RNA的核心种类之一, 小RNA在各种生命活动中均发挥重要调控作用, 其产生及功能发挥依赖于不同的DCL、RDR和AGO蛋白。目前, 植物中功能和调控方式较为明确的是以21 nt为主的miRNA和24 nt siRNA, 其它长度和类型的小RNA由于积累水平通常较低, 尚知之甚少。近日, 南方科技大学郭红卫团队发现, 拟南芥(Arabidopsis thaliana)在缺氮等逆境胁迫下可产生大量依赖于DCL2和RDR6的22 nt siRNA。22 nt siRNA与AGO1结合形成效应复合物, 抑制硝酸还原酶基因(NIA1NIA2)等mRNA的翻译效率, 从而减少植物在营养缺失条件下的能量消耗。这意味着, 当植物遇到不利环境时, 虽然无法通过移动来逃避逆境, 但可通过诱导产生小RNA, 协调和平衡正常的生长发育与胁迫响应。  相似文献   

20.
Numerous large non-coding RNAs are rapidly being discovered, and many of them have been shown to play vital roles in gene expression, gene regulation, and human diseases. Given their often structured nature, specific recognition with an antibody fragment becomes feasible and may help define the structure and function of these non-coding RNAs. As demonstrated for protein antigens, specific antibodies may aid in RNA crystal structure elucidation or the development of diagnostic tools and therapeutic drugs targeting disease-causing RNAs. Recent success and limitation of RNA antibody development has made it imperative to generate an effective antibody library specifically targeting RNA molecules. Adopting the reduced chemical diversity design and further restricting the interface diversity to tyrosines, serines, glycines, and arginines only, we have constructed a RNA-targeting Fab library. Phage display selection and downstream characterization showed that this library yielded high-affinity Fabs for all three RNA targets tested. Using a quantitative specificity assay, we found that these Fabs are highly specific, possibly due to the alternate codon design we used to avoid consecutive arginines in the Fab interface. In addition, the effectiveness of the minimal Fab library may challenge our view of the protein–RNA binding interface and provide a unique solution for future design of RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号