首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli uses the proton motive force of the cytoplasmic membrane and TonB protein to energize the active transport of iron-siderophores and vitamin B12 across the outer membrane. TonB shuttles between the cytoplasmic and outer membranes, presumably during the course of energy transduction. Previous results indicated that the carboxy-terminal 65 amino acids of TonB are essential for both its outer membrane association and activity. A highly conserved region (residues 199-216) within this domain, predicted to be an amphipathic alpha-helix, was the initial focus of this study. Scanning mutagenesis indicated that only the aromatic residues F202, W213 and Y215 were individually important for activity. When the crystal structure of a dimeric TonB carboxy-terminus subsequently became available, we observed that two additional aromatic residues outside that region, F180 and F230, were potentially engaged in end-on hydrophobic interactions with the three residues identified previously. Changing these five aromatic residues individually to alanine reduced TonB activity. Surprisingly, however, each substitution exhibited a unique phenotypic profile with respect to ability to support [55Fe]-ferrichrome transport, sensitivity to colicins B, D, Ia and M or sensitivity to bacteriophage phi80. The phenotypic results suggested that the carboxy-terminus of TonB was a flexible and dynamic domain that could interact specifically with different ligands or transporters, perhaps through the aromatic residues. The possibility of interactions among all the aromatic residues was tested using double-mutant cycle analysis. All possible combinations of alanine substitutions were constructed, with the result that TonB containing any double-alanine substitution was inactive in the phenotypic assays, while retaining the ability to associate with the outer membrane. This synergistic, rather than additive, effect of the double mutants suggested that, consistent with the flexibility suggested by analysis of the single substitutions, all the aromatic residues might be capable of interacting with one another. A means of reconciling these results with the crystal structure is presented.  相似文献   

2.
The TonB system of Escherichia coli (and most other Gram-negative bacteria) is distinguished by its importance to iron acquisition, its contribution to bacterial pathogenesis, and a unique and mysterious mechanism of action. This system somehow gathers the potential energy of the cytoplasmic membrane (CM) proton gradient and delivers it to active transporters in the outer membrane (OM). Our understanding of this system is confounded by the challenge of reconciling often contradictory in vivo and in vitro studies that are presented in this review.  相似文献   

3.
ExbB and ExbD proteins are part of the TonB-dependent energy transduction system and are encoded by the exb operon in Escherichia coli. TonB, the energy transducer, appears to go through a cycle during energy transduction, with the absence of both ExbB and ExbD creating blocks at two points: (i) in the inability of TonB to respond to the cytoplasmic membrane proton motive force and (ii) in the conversion of TonB from a high-affinity outer membrane association to a high-affinity cytoplasmic membrane association. The recent observation that ExbB exists in 3.5-fold molar excess relative to the molarity of ExbD in E. coli suggests the possibility of two types of complexes, those containing both ExbB and ExbD and those containing only ExbB. Such distinct complexes might individually manifest one of the two activities described above. In the present study this hypothesis was tested and rejected. Specifically, both ExbB and ExbD were found to be required for TonB to conformationally respond to proton motive force. Both ExbB and ExbD were also required for association of TonB with the cytoplasmic membrane. Together, these results support an alternative model where all of the ExbB in the cell occurs in complex with all of the ExbD in the cell. Based on recently determined cellular ratios of TonB system proteins, these results suggest the existence of a cytoplasmic membrane complex that may be as large as 520 kDa.  相似文献   

4.
5.
Evidence for a human-specific Escherichia coli clone   总被引:1,自引:0,他引:1  
Escherichia coli is a widespread commensal of the vertebrate intestinal tract. Until recently, no strong association between a particular clone and a given host species has been found. However, members of the B2 subgroup VIII clone with an O81 serotype appear to be human host specific. To determine the degree of host specificity exhibited by this clone, a PCR-based assay was used to screen 723 faecal and clinical isolates from humans, and 904 faecal isolates from animals. This clone was not detected among the animal isolates, but was discovered in people living in Africa, Europe and South America. The clone is rarely isolated from people suffering from intestinal or extraintestinal disease and is avirulent in a mouse model of extraintestinal infection. Fine-scale epidemiological analysis suggests that this clone is competitively dominant relative to other members of the B2 phylogenetic group and that it has increased in frequency over the past 20 years. This clone appears to be a good candidate for use as a probiotic, and may be suitable as an indicator of human faecal contamination in microbial source tracking studies.  相似文献   

6.
7.
The mechanism of action of microcin E492 (MccE492) was investigated for the first time in live bacteria. MccE492 was expressed and purified to homogeneity through an optimized large-scale procedure. Highly purified MccE492 showed potent antibacterial activity at minimal inhibitory concentrations in the range of 0.02-1.2 microM. The microcin bactericidal spectrum of activity was found to be restricted to Enterobacteriaceae and specifically directed against Escherichia and Salmonella species. Isogenic bacteria that possessed mutations in membrane proteins, particularly of the TonB-ExbB-ExbD complex, were assayed. The microcin bactericidal activity was shown to be TonB- and energy-dependent, supporting the hypothesis that the mechanism of action is receptor mediated. In addition, MccE492 depolarized and permeabilized the E. coli cytoplasmic membrane. The membrane depolarization was TonB dependent. From this study, we propose that MccE492 is recognized by iron-siderophore receptors, including FepA, which promote its import across the outer membrane via a TonB- and energy-dependent pathway. MccE492 then inserts into the inner membrane, whereupon the potential becomes destabilized by pore formation. Because cytoplasmic membrane permeabilization of MccE492 occurs beneath the threshold of the bactericidal concentration and does not result in cell lysis, the cytoplasmic membrane is not hypothesized to be the sole target of MccE492.  相似文献   

8.
The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates.  相似文献   

9.
Oxidative phosphorylation, active transport of proline, aerobic- and ATP-driven proton translocation and transhydrogenation of NADP+ by NADH, occurred in lipoic acid-deficient cells or vesicles of a lipoic acid auxotroph of E. coli, W1485 lip 2. Addition of lipoic acid had little effect on these processes. Tributyltin chloride, which has been proposed to inhibit oxidative phosphorylation by reaction with lipoic acid (Cain et al., Biochem. J. (1977) 166, 593), was an effective inhibitor of aerobic and ATP-dependent proton translocation and transhydrogenation in lipoic acid-deficient vesicles from this organism. Our results do not support the proposal of Partis et al. (FEBS Lett. (1977) 75, 47) that lipoic acid is involved in the energy transducing processes associated with the membrane of E. coli.  相似文献   

10.
11.
The transport of Fe(III)-siderophore complexes and vitamin B12 across the outer membrane of Escherichia coli requires the TonB-dependent energy transduction system. A set of murine monoclonal antibodies (MAbs) was generated against an E. coli TrpC-TonB fusion protein to facilitate structure and function studies. In the present study, the epitopes recognized by these MAbs were mapped, and their distribution in gram-negative organisms was examined. Cross-species reactivity patterns obtained against TonB homologs of known sequence were used to refine epitope mapping, with some epitopes ultimately confirmed by inhibition experiments using synthetic polypeptides. Epitopes recognized by this set of MAbs were conserved in TonB homologs for 9 of 12 species in the family Enterobacteriaceae (including E. coli), including previously unidentified TonB homologs in Shigella, Citrobacter, Proteus, and Kluyvera species. These homologs were also detected by a polyclonal alpha-TrpC-TonB serum that additionally recognized the known Yersinia enterocolitica TonB homolog and a putative TonB homolog in Edwardsiella tarda. These antibody preparations failed to detect the known TonB homologs of either Pseudomonas putida or Haemophilus influenzae but did identify potential TonB homologs in several other nonenteric gram-negative species. In vivo chemical cross-linking experiments demonstrated that in addition to TonB, auxiliary components of the TonB-dependent energy transduction system are broadly conserved in members of the family Enterobacteriaceae, suggesting that the TonB system represents a common system for high-affinity active transport across the gram-negative outer membrane.  相似文献   

12.
Non-enzymatic glycosylation (glycation) is a chain of chemical reactions affecting free amino groups in proteins of long-living eukaryotes. It proceeds in several steps leading to the consecutive formation of Schiff bases, Amadori products and advanced glycation end-products (AGEs). To our knowledge, this process has not been observed in prokaryotes so far. However, the present study provides clear-cut evidence that glycation takes place in bacteria despite their short life span. We have detected AGEs in recombinant human interferon gamma (rhIFN-gamma) produced in Escherichia coli as well as in total protein of the same bacterium using three different approaches: (i) Western blotting using two monoclonal antibodies raised against AGEs; (ii) fluorescent spectroscopy; and (iii) investigation of the effect of known AGE inhibitors (such as acetyl salicylic acid and thiamine) on the glycation reaction. Our study shows that non-enzymatic glycosylation is initiated during the normal growth of E. coli and results in AGE formation even after isolation of proteins. This process seems to be tightly associated with some post-translational modifications observed in the cysteineless rhIFN-gamma, such as covalent dimerization and truncation.  相似文献   

13.
14.
We used the maltose transport complex MalFGK2 of the Escherichia coli cytoplasmic membrane as a model for the study of the assembly of hetero-oligomeric membrane protein complexes. Analysis of other membrane protein complexes has led to a general model in which a unique, ordered pathway is followed from subunit monomers to a final oligomeric structure. In contrast, the studies reported here point to a fundamentally different mode for assembly of this transporter. Using co-immunoprecipitation and quantification of interacting partners, we found that all subunits of the maltose transport complex efficiently form heteromeric complexes in vivo. The pairwise complexes were stable over time, suggesting that they all represent assembly intermediates for the final MalFGK2 transporter. These results indicate that several paths can lead to assembly of this oligomer. We also characterized MalF and MalG mutants that caused reduced association between some or all of the subunits of the complex with this assay. The mutant analysis highlights some important motifs for subunit contacts and suggests that the promiscuous interactions between these Mal proteins contribute to the efficiency of complex assembly. The behaviors of the wild type and mutant proteins in the co-immunoprecipitations support a model of multiple assembly pathways for this complex.  相似文献   

15.
16.
17.
We demonstrate here that Escherichia coli synthesizes two different glycinamide ribonucleotide (GAR) transformylases, both catalyzing the third step in the purine biosynthetic pathway. One is coded for by the previously described purN gene (GAR transformylase N), and a second, hitherto unknown, enzyme is encoded by the purT gene (GAR transformylase T). Mutants defective in the synthesis of the purN- and the purT-encoded enzymes were isolated. Only strains defective in both genes require an exogenous purine source for growth. Our results suggest that both enzymes may function to ensure normal purine biosynthesis. Determination of GAR transformylase T activity in vitro required formate as the C1 donor. Growth of purN mutants was inhibited by glycine. Under these conditions GAR accumulated. Addition of purine compounds or formate prevented growth inhibition. The regulation of the level of GAR transformylase T is controlled by the PurR protein and hypoxanthine.  相似文献   

18.
The nature of the ions that are translocated by Escherichia coli and Paracoccus denitrificans complexes I was investigated. We observed that E. coli complex I was capable of proton translocation in the same direction to the established deltapsi, showing that in the tested conditions, the coupling ion is the H(+). Furthermore, Na(+) transport to the opposite direction was also observed, and, although Na(+) was not necessary for the catalytic or proton transport activities, its presence increased the latter. We also observed H(+) translocation by P. denitrificans complex I, but in this case, H(+) transport was not influenced by Na(+) and also Na(+) transport was not observed. We concluded that E. coli complex I has two energy coupling sites (one Na(+) independent and the other Na(+) dependent), as previously observed for Rhodothermus marinus complex I, whereas the coupling mechanism of P. denitrificans enzyme is completely Na(+) independent. This work thus shows that complex I energy transduction by proton pumping and Na(+)/H(+) antiporting is not exclusive of the R. marinus enzyme. Nevertheless, the Na(+)/H(+) antiport activity seems not to be a general property of complex I, which may be correlated with the metabolic characteristics of the organisms.  相似文献   

19.
Jiang P  Ninfa AJ 《Biochemistry》2007,46(45):12979-12996
PII signal transduction proteins are among the most widely distributed signaling proteins in nature, controlling nitrogen assimilation in organisms ranging from bacteria to higher plants. PII proteins integrate signals of cellular metabolic status and interact with and regulate receptors that are signal transduction enzymes or key metabolic enzymes. Prior work with Escherichia coli PII showed that all signal transduction functions of PII required ATP binding to PII and that ATP binding was synergistic with the binding of alpha-ketoglutarate to PII. Furthermore, alpha-ketoglutarate, a cellular signal of nitrogen and carbon status, was observed to strongly regulate PII functions. Here, we show that in reconstituted signal transduction systems, ADP had a dramatic effect on PII regulation of two E. coli PII receptors, ATase, and NRII (NtrB), and on PII uridylylation by the signal transducing UTase/UR. ADP acted antagonistically to alpha-ketoglutarate, that is, low adenylylate energy charge acted to diminish signaling of nitrogen limitation. By individually studying the interactions that occur in the reconstituted signal transduction systems, we observed that essentially all PII and PII-UMP interactions were influenced by ADP. Our experiments also suggest that under certain conditions, the three nucleotide binding sites of the PII trimer may be occupied by combinations of ATP and ADP. In the aggregate, our results show that PII proteins, in addition to serving as sensors of alpha-ketoglutarate, have the capacity to serve as direct sensors of the adenylylate energy charge.  相似文献   

20.
Two-dimensional 1H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike those of the folate complex, are severely broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. At 303 K, NOESY spectra with mixing times of 100 ms did not show interconversion between these isomers. However, exchange cross-peaks were observed in a 700-ms NOESY spectrum at 323 K which demonstrated that these isomers are interconverting slowly on the NMR time scale. Many of the side chains with clearly doubled resonances were located in the beta-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号