首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The initiation of the floral parts (mainly stamens and carpels) is described for the four dioecious species of Piper: Piper polysyphorum C. DC, P. bavinum C. DC., P. pedicellatum C. DC., P. pubicatulum C. DC. The initiation order resembles that in the perfect flowers of some species, such as P. amalago. The carpels are initiated simultaneously, in most cases, as three primordia. In P. polysyphorum , carpel tips split into two lobes, so that finally a four- or five-lobed stigma will be formed when the ovary is fully developed. The staminodes (exactly, staminodial primordia) in the female flowers are initiated in the same order as the stamens in the male flowers and remain until the ovaries are enclosed. The unisexual flowers have stamens reduced to three or two. The reduction of stamen or staminode (staminodial primordium) number is accompanied by the change of their positions from opposite the carpels to alternate. After the initiation of the staminodes, or, exactly staminodial primordia, in the female flowers, the central part of the floral apex forms a ring meristem which is triangular. The carpel primordia (often three) are initiated on the three points of the ring meristem. The evolutionary trends of the flowers of Piper sensu lato are discussed.  相似文献   

2.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

3.
Stamens that have lost their primary function of pollen production, or staminodes, occur uncommonly within angiosperms, but frequently fulfill important secondary floral functions. The phylogenetic distribution of staminodes suggests that they typically arise during evolutionary reduction of the androecium. Differences in the genetic control and patterns of stamen loss between actinomorphic and zygomorphic flowers shape staminode development. In clades with actinomorphic flowers, staminodes generally replace an entire stamen whorl and staminode loss seems irreversible. In contrast, in clades with zygomorphic flowers staminodes evolve from a subset of the stamens in a whorl and staminodes can reappear in a lineage after being lost (e.g., Cheloneae, Scrophulariaceae). If staminodes do not adopt new functions during androecium reduction they are lost quickly, so that nonfunctional staminodes appear only in recently derived taxa. Alternatively, when staminodes assume new floral roles, either directly or indirectly after a nonfunctional period, they can become integral floral components which perpetuate within clades (e.g., Orchidaceae). Indirect evolution of staminode function allows greater flexibility of function by allowing staminodes to take over roles not performed by stamens, such as involvement in mechanisms to prevent self-pollination and mechanisms of explosive pollination. Multifunctional staminodes characterize lineages with universal or widespread staminodes.  相似文献   

4.
We provide a detailed comparative study of floral ontogeny and vasculature in Xyridaceae, including XyrisAbolboda and Orectanthe. We evaluate these data in the context of a recent well-resolved phylogenetic analysis of Poales to compare floral structures within the xyrid clade (Xyridaceae and Eriocaulaceae). Xyrids are relatively diverse in both flower structure and anatomy; many species incorporate diverse and unusual floral structures such as staminodes and stylar appendages. Xyridaceae possess three generally epipetalous stamens in a single whorl; the “missing” stamen whorl is either entirely absent or transformed into staminodes. Fertile stamens each receive a single vascular bundle diverged from the median petal bundle. In Xyris, the stamen bundle diverges at the flower base, but it diverges at upper flower levels in both Abolboda and Orectanthe. In species of Abolboda that possess staminodes, staminode vasculature is closely associated with the lateral vasculature of each petal. Despite the likely sister-group relationship between Eriocaulaceae and Xyridaceae, our character optimization indicates that the stylar appendages that characterize some Xyridaceae (except Xyris and Achlyphila) are non-homologous with those of some Eriocaulaceae. On the other hand, it remains equivocal whether the loss of a fertile outer androecial whorl occurred more than once during the evolutionary history of the xyrid clade; this transition occurred either once followed by a reversal to fertile stamens in Eriocauloideae and staminodes in some Xyridaceae, or twice independently within both Xyridaceae and Eriocaulaceae.  相似文献   

5.
The inner staminodes (between stamens and carpels) in some relicMagnoliales (Austrobaileyaceae, Degeneriaceae, Eupomatiaceae, andHimantandraceae) are not just reduced stamens; they are very elaborate organs. InEupomatiaceae, Himantandraceae, and probablyDegeneriaceae they have their own secretory structures which do not occur on the stamens. These play an important role in floral biology. They contribute to the floral coloration pattern; they effect herkogamy by their position and by movements; they provide shelter and food tissue and food secretions (?) for pollinating beetles; they secrete odouriferous oils, mucilage (probably for pollen adherence) and water or nectar (?). For theHimantandraceae a new secretory region on the base of the inner staminode is described. These complicated inner staminodes are extreme specializations of primitive floral types. They have no counterparts in more advanced subclasses of the angiosperms.  相似文献   

6.
This study deals specifically with floral organogenesis and the development of the inflorescence of Philodendron squamiferum and P. pedatum. Pistillate flowers are initiated on the lower portion of the inflorescence and staminate flowers are initiated on the distal portion. An intermediate zone consisting of sterile male flowers and atypical bisexual flowers with fused or free carpels and staminodes is also present. This zone is located between the sterile male and female floral zones. In general, the portion of bisexual flowers facing the male zone forms staminodes, and the portion facing the female zone develops an incomplete gynoecium with few carpels. The incomplete separation of some staminodes from the gynoecial portion of the whorl shows that they belong to the same whorl as the carpels. There are two levels of aberrant floral structures in Philodendron: The first one is represented by the presence of atypical bisexual flowers, which are intermediates between typical female flowers and typical sterile male flowers. The second one is the presence of intermediate structures between typical carpels and typical staminodes on a single atypical bisexual flower. The atypical bisexual flowers of P. squamiferum and P. pedatum are believed to be a case of homeosis where carpels have been replaced by sterile stamens on the same whorl. A quantitative analysis indicates that in both species, on average, one staminode replaces one carpel.  相似文献   

7.
All staminodes in an androecium fail to produce viable pollen grains and cannot contribute directly to male fitness. Staminodes are identified in the flowers of approximately 54% of known genera representing >32% of all angiosperm families. The functional morphology and biochemistry of staminodes differs significantly from stamens with fertile anthers. In the absence of sperm production, some staminodes evolved novel adaptations contributing to the reproductive success of their flowers. We subdivided these staminodes into eight functional types: 1) Staminodes offering visual/olfactory cues; 2) Staminodes offering edible/inedible rewards; 3) Staminodes that deceive pollinators with false rewards; 4) Staminodes facilitating or directing the movements of pollinators in flowers;5) Stami nodes that facilitate stigma movement; 6) Staminodes functioning as secondary pollen presenters; 7) Staminodes that protect other floral organs; 8) Staminodes that prevent mechanical self pollination (autogamy). As a component within a flower, the majority of staminodes function as promoters of reproductive success by interacting directly with the pollinator to increase pollination efficiency (both pollen dispersal and deposition). Therefore, it is not surprising that one staminode may have more than one function over the flower′s lifespan and is closely associated with the size, abundance, behavior and taxonomic diversity of pollinators, floral predators and thieves. To correctly evaluate the function of staminodes, multi disciplinary approach using a range of protocols, equipment and materials is suggested. This approach allows us to compare the roles different staminodes play in the reproductive success of both closely and distantly related angiosperms, then uncover their evolutionary significance in angiosperm diversification.  相似文献   

8.
《Comptes rendus biologies》2019,342(5-6):220-229
The in vitro cultivation of date palm staminodes (vestigial stamens) at different stages of female floral ontogenesis confirms the persistence at an immature state of such organs at all the floral differentiation stages. This is evidenced even in fully mature female flowers. Our study revealed the advanced developmental patterns of these rudimentary structures, which bear diverse morphogenetic potentialities. In vitro cultivation of staminodes provides new opportunities for in vitro regeneration of date palm. Such developmental processes were found to be modulated by the stage of floral differentiation, which closely reflected the level of staminode maturity. Development was also impacted by the composition and concentration in plant growth regulators (NAA, BAP and 2,4-D) of the culture media. The large morphogenetic plasticity of the staminodes disposed them to evolutionary variations of the date palm reproduction system. The practical benefits (micropropagation) and the fundamental interests (evolutionary process) of our investigation are discussed.  相似文献   

9.
Hrycan WC  Davis AR 《Annals of botany》2005,95(7):1113-1130
BACKGROUND AND AIMS: Flowers of Commelina coelestis and C. dianthifolia provide pollen alone as a floral reward, and rely on visual cues to attract pollinators. Three stamen types, all producing pollen, occur in each of these species: two cryptically coloured lateral stamens, a single cryptically coloured central stamen and three bright yellow staminodes that sharply contrast with the blue to purple corolla. The objective was to compare the stamen structure and pollen characteristics of each of the three stamen types, and to test the hypothesis that the staminodes are poor contributors of viable pollen for the siring of seed. The pollination roles of the three stamen types and the breeding systems of both species were also explored. Methods: Light, fluorescence and scanning electron microscopy were utilized to examine stamen morphology and pollen structure and viability. Controlled hand pollinations were used to explore the breeding system of each species. Filament and style lengths were measured to investigate herkogamy and autogamy. KEY RESULTS: Pollen from all stamen morphs is viable, but staminode pollen has significantly lower viability. Pollen polymorphism exists both (a) between the lateral and central stamens and the staminodes, and (b) within each anther. Lateral and central stamens have thicker endothecia with a greater number of secondary cell wall thickenings than the staminodes. CONCLUSIONS: Both species are entomophilous and facultatively autogamous. Lateral stamen pollen is important for cross-pollination, central stamen pollen is utilized by both species as a pollinator reward and for delayed autogamy in C. dianthifolia, and the staminodes mimic, by means of both colour and epidermal features, large amounts of pollen to attract insects to the flowers. Pollen from all three anther morphs is capable of siring seed, although staminode pollen is inferior. The thin staminode endothecium with fewer secondary thickenings retards staminode dehiscence.  相似文献   

10.
《Flora》2006,201(5):407-418
The present paper is part of a study dealing with various aspects of reproduction of two Costa Rican Clusia species offering resin as a floral reward. It provides data on the floral development and flower (especially stamen and staminode) anatomy of one of the species, Clusia valerioi. In the early stages, both male and female flowers develop in the same manner. The bracts are distinguished by a decussate arrangement from the five sepals and five petals, which emerge in a spiral manner. In the male flowers the apical meristem forms five meristematic mounds (common stamen primordia) that are pentagonally arranged around the apical meristem in epipetalous position. From these mounds, the primordia of the proper stamina emerge in 3–5 whorls. Direction is centrifugal. In the centre, five hemispherical bulges arise which develop into carpel primordia. These, however, cease growth, stay rudimentary and are hidden by the stamens in the mature male flower. The adult stamens consist mainly of a thick angular filament column, while the two anthers situated at the flattened top are very small. One anther is annular and surrounds a second, hemispherical one right in the centre. At the periphery, these two pollen sacs (provided with a distinct wall of customary anatomy) are surrounded by a ring-like protuberance of the filament. The resin canals are situated at the periphery of the filament. Their schizogenous development is documented in cross sections. At anthesis, the resin is released from the ring-like filament protuberance by burst of the single-layered epidermis. In the female flower, the five meristematic mounds produce two whorls of staminode primordia. The development of the staminodes does not essentially differ from that of the fertile stamens, but some staminodes lack the central pollen sac and the other tissues do not develop into pollen grains. An attempt is made to derive the peculiar stamen morphology of Clusia valerioi and similar species from conventional stamens. Three hypotheses are proposed and discussed.  相似文献   

11.
The basic pattern of the vascular supply to stamens and carpels in the flowers ofClematis is discussed on the basis of serial sections. The bundles of the receptacular stele show fairly regular fusions and divisions in relation to the origin of the vascular supply, giving off a single trace for each stamen or carpel. In many cases the trace arises by the trifurcation of the “fused bundle” and the subsequent departure of the median strand. This is the pattern basic to the structure of the receptacular stele of the genus. Although the basic pattern involves a variety of modifications, each of the diverging traces fundamentally leaves a single independent gap in the stele, contrary to the conclusion of previous authors. Similarities and differences between a group of stamens and carpels and that of sepals and foliage leaves are also discussed based on the results of the present and previous studies on the vascular anatomy of the floral receptacle and the inflorescence axis.  相似文献   

12.
Barabé D  Lacroix C  Jeune B 《Annals of botany》2008,101(7):1027-1034
Background and Aims: The inflorescence of Philodendron constitutes an interestingmorphological model to analyse the phenomenon of homeosis quantitativelyat the floral level. The specific goals of this study were (1)to characterize and quantify the range of homeotic transformationin Philodendron billietiae, and (2) to test the hypothesis thatthe nature of flowers surrounding atypical bisexual flowers(ABFs) channel the morphological potentialities of atypicalbisexual flowers. Methods: Inflorescences of P. billietiae at different stages of developmentwere observed using SEM. The number of appendices in male, femaleand sterile flowers were counted on 11 young inflorescences(5–6 flowers per inflorescence). The number of staminodesand carpels on ABFs were counted on 19 inflorescences (n = 143).These data were used for regression and ANOVA analyses. Results: There was an average of 4·1 stamens per male flower,9·8 carpels per female flower and 6·8 staminodesper sterile male flower. There was an average of 7·3floral appendices per atypical flower. Staminodes and carpelsare inserted on the same whorl in ABFs. A negative exponentialrelationship was found between the average number of staminodesand the number of carpels in ABFs. If only the ABFs consistingof less than six carpels are considered, there is a linear relationshipbetween the number of carpels and the average number of staminodes.The value of the slope of the regression equation indicatesthat on average, in P. billietiae, 1·36 carpels are replacedby one staminode. Conclusions: In P. billietiae, the number of appendages in female flowersimposes a constraint on the maximum total number of appendages(carpels and staminodes) that can develop on ABFs. The quantitativeanalyses indicate that the average number of different typesof floral appendages on an ABF and the number of organs involvedin a homeotic transformation are two independent phenomena.  相似文献   

13.
“Androecium” ofSicyos angulatus andSechium edule is unique in having a solid central column below a head portion with thecae. Its morphogenesis was examined for the two species. The developmental course is composed of two distinct successive phases; (1) establishment of stamen primordia and (2) uplift of the stamen primordia caused by development of a central column below them. In the first phase, there is a difference between the two species; inSicyos angulatus, two bithecal and one monothecal stamen primordia are formed by congenital fusion among preformed five protrsions, whilst inSechium edule, three or four monothecal stamen primordia are formed without fusion. The central column is later produced by intercalary growth in a region below the stamen primordia in both species. Concomitant with central column development, the center of the floral primordium, which was surrounded by the early formed stamen primordia, is raised up to the top of the central column. The central column could be interpreted as a receptacular column, and not as congenitally fused stamen filaments, as currently believed. The “androecium” of the both species is considered an androecium complex, which consists of the stamens and a receptacular column.  相似文献   

14.
In Freycinetia reineckei the staminate flower (on the staminate spikes) comprises 3 or 4 (sometimes 2) stamens and a pistillode with 2 (sometimes 4) carpellodes, and the pistillate flower (on the pistillate spikes) is formed of a pistil with 2 (sometimes 4) carpels and of 3 or 4 (sometimes 2) staminodes. This perfect floral homology, also observed in all the other species that were studied with both pistillate and staminate material, strongly suggests that the flower of Freycinetia is basically and potentially bisexual, and may explain the occasional sexual lability and bisexuality of that flower (occurrence of both pistillate and staminate inflorescences, and/or of bisexual inflorescences with bisexual flowers and/or unisexual flowers, on the same individuals) in some species, and also the frequent occurrence of bisexual spikes in this species. These may be partitioned into pistillate, staminate, mixed and sterile zones. In the pistillate zones the flowers have the same aspect and structure as the pistillate flowers. In the staminate zones the flowers generally comprise 3 or 4 (sometimes 2) stamens and a ‘semi-pistil’ some have both stamens and staminodes. The semi-pistils are intermediate between pistils and pistillodes in length, aspect and structure, but always have placentas and ovules. In the mixed zones the flowers are generally formed of a pistil and 3 or 4 (sometimes 2) stamens, and are therefore true hermaphrodite flowers; some have both stamens and staminodes. In the sterile zones the flowers comprise a semi-pistil and 3 or 4 (sometimes 2) staminodes. The staminodes are anatomically very similar to the stamens, especially in the staminate, mixed, and sterile zones, in which they exhibit a wide range of variation in length, aspect and structure. The perfect floral homology as generic character on one hand, and the occasional bisexuality both with and without bisexual flowers and other aspects of sex expression (e.g. occurrence of both pistillate and staminate shoots on the same individuals) in some species on the other hand, seem to indicate that Freycinetia is a basically monoecious, sex changing genus.  相似文献   

15.
Vestigial organs arise commonly during morphological evolution, but they need not be destined for elimination. Instead, vestigial organs may facilitate functional innovation because their freedom from functional constraints allows them to assume novel roles that their functional progenitor could not perform. We illustrate this vestigial transition between functions with an experimental study of the staminode of Penstemon flowers. Previous phylogenetic and developmental studies indicate that this staminode represents a stamen that was lost phenotypically, but not genetically, and then reappeared in the tribe Cheloneae, to which Penstemon belongs. To assess whether the Penstemon staminode has adopted a novel function(s), we compared pollination of flowers with and without staminodes for two bee-pollinated species, P. ellipticus and P. palmeri, and two hummingbird-pollinated species, P. centranthifolius and P. rostriflorus. The staminode acts differently in the two bee-pollinated species. For P. ellipticus, which represents the basal Penstemon lineage, the staminode hinders pollinator access to nectar, which increases visit duration and pollinator contact with sexual organs, thereby increasing pollen receipt by stigmas and controlling pollen removal from anthers. In contrast, in P. palmeri, the staminode acts as a lever that enhances stigma contact with the pollinator, so that staminode removal reduced pollen receipt, but did not affect pollinator attraction, visit duration, or pollen removal. Unlike in bee-pollinated species. staminode removal from hummingbird-pollinated species did not affect any measured aspect of pollination, indicating that the staminode serves no function in this derived pollination system. These results illustrate several features of vestigial organs: loss of function can be temporary; loss of function facilitates the evolution of novel roles; and functional reinvention will often involve only a single role, thus increasing the chance of both secondary loss of function (bird-pollinated penstemons) and functional switches (P. palmeri).  相似文献   

16.
林祁  段林东  袁琼 《植物研究》2008,28(6):648-652
报道了单性木兰(Kmeria septentrionalis Dandy)花的形态发生过程。发现过去一直被认为是雌花条状披针形的“内轮花被片”,实际为退化雄蕊,它形态发生的时间与位置均与雄花的雄蕊相同,在成熟结构中仍可见药室残迹,说明单性木兰的雌性花是由两性花退化而来。通过与K. duperreana(Pierre) Dandy和Magnolia thailandica Noot. &; Chalermglin雌花的比较,发现它们雌花的形态相同,从而得知人们长期以来对此3种植物雌花的认识有误,原一直认为的“内轮花被片”实为退化雄蕊。  相似文献   

17.
利用扫描电子显微镜、光学显微镜对爪哇蒙蒿子(Anaxagorea javanica Blume)可育雄蕊、内轮退化雄蕊和雌蕊的形态、结构进行了观察,并利用组织化学染色法对内轮退化雄蕊和柱头顶端腺毛化学成分进行了检测。结果显示,内轮退化雄蕊顶端为长条状腺毛,柱头顶端有头状和盾状腺毛,两者顶端的腺毛形态和结构明显不同,但分泌物成分类似,都含有蛋白质和脂类物质。内轮退化雄蕊的横切面为一层表皮细胞包围着薄壁组织,中央有一束维管束,与可育雄蕊花丝部位的横切面十分相似,是介于可育雄蕊和雌蕊之间的过渡结构。在雌蕊阶段,退化雄蕊顶端腺体释放的黏液供传粉昆虫觅食;在雄蕊阶段,退化雄蕊顶端覆盖柱头,呈S型,防止自花授粉。爪哇蒙蒿子薄片状可育雄蕊、内轮退化雄蕊以及可育雄蕊和退化雄蕊腹面上存在气孔等原始性状,是连接番荔枝科和其外类群的同源特征。  相似文献   

18.
The mature flower ofHarungana madagascariensis (Choisy)Poir. has an androecium of five antipetalous fascicles, consisting of four stamens each. The stamen fascicles alternate with five indented nectary scales. A SEM-study of the floral development, as well as a study of the floral anatomy was carried out to understand whether the nectariferous scales represent staminodia or are receptacular in nature and consequently whether or not the androecium ofHarungana, and theClusiaceae in general, is originally diplostemonous. The five petals originate by the splitting of petal-stamen complexes. Next the upper part of each complex differentiates basipetally in four stamens. The stamens remain fascicled and are lifted on a long stalk at maturity. Five carpel primordia are initiated united in a low ringwall. The five nectary scales appear after carpel inception and develop an external morphology reminiscent of anthers. The floral anatomy reveals an independent origin of sepal median traces and common sepal lateral traces, free petal traces, stamen fascicle traces and alternating vascular tissue which supplies the nectaries. The petal-stamen complexes are the result of a retardation in petal inception, linked with the absorption of petal tissue into the stamen primordia. The development of the stamen fascicles is discussed; it is suggested that they are of a secondary nature and do not appear as a reduction from a multistaminate androecium. The external morphology and vascular anatomy of the scales speaks in favour of a staminodial nature. The comparison with some other species of theClusiaceae gives evidence of a diplostemonous ancestry of the androecium.  相似文献   

19.
The genus Clusia L. is highly variable in many floral features. Several Clusia species have floral organs of mixed or uncertain identity, such as organs that are transitional between bracteoles and sepals, petaloid sepals, and partly petaloid stamen rings. Unique in Clusia is the "corona" of Clusia gundlachii Stahl, a thick, urn-shaped structure that is initiated as a ring primordium. In male flowers it surrounds a synandrium, and in female flowers it surrounds the ovary and a row of staminodes. The corona combines features typical of both petals and stamens of other Clusia species. It is hypothesized that this corona may be the result of the altered expression patterns of the genes that determine floral organ identity. Clusia gundlachii has many floral features in common with two small genera that are sometimes included in Clusia: Havetiopsis and Oedematopus. These genera have four thick connivent petals. Their apparent close relationship makes it seem likely that the corona of C. gundlachii evolved via congenital fusion of such petals. The corona is also somewhat similar to the staminodial rings present in many Clusia species, but taxa in which such organs occur show little similarity to C. gundlachii in terms of other floral characters.  相似文献   

20.
杏黄兜兰的花发育过程及引种栽培   总被引:1,自引:0,他引:1  
通过形态解剖研究了杏黄兜兰花的发育过程,发现杏黄兜兰5月份发育出花序原基,6~7月份发育出花序鞘,7~8月份发育出苞片,8月底至9月完成花器官形态分化过程。形态分化完成后杏黄兜兰的花器官继续快速增长。退化雄蕊、能育雄蕊、花柱在花形成后早期不融合,在后期才融合形成合蕊柱,且因为相对生长速率的不同,三者的相对位置、形态也发生改变。此外,在7~9月份引种至昆明栽培的不同批次杏黄兜兰中,产生花芽比率显著不同,进一步证实8月底至9月初是杏黄兜兰进行花器官形态分化的关键时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号