首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
2.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

3.
1H nuclear magnetic resonance techniques were used to study the binding of uridine 5'-triphosphate to the Ca2+-transport ATPase (EC 3.6.1.3) of sarcoplasmic reticulum vesicles from rabbit skeletal muscle. The nuclear spin relaxation times determined for the bound nucleotide are used to characterize the rotational motion of the ATPase to which the nucleotide is bound. The results, assuming an anisotropic model for the motion of the ATPase in the membrane, place a low upper limit on the rotational correlation time of the ATPase. This indicates that the motion of the ATPase in the membrane is quite rapid when compared, for example, with the motion found for other membrane-bound proteins such as rhodopsin.  相似文献   

4.
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), a vesicular integral membrane protein, is the best-characterized member of the P-type ion translocating ATPase superfamily. Here we describe the cloning and structural analysis of a sea urchin SERCA (suSERCA) cloned from testis cDNA. The approximately 112 kDa suSERCA is 1022 amino acids with approximately 70% identity and 80% similarity to all known mammalian SERCA isoforms. suSERCA shares all the structural features of mammalian SERCAs, including domains: A, actuator; N, nucleotide-binding; and P, phosphorylation, and also 10 transmembrane helices. Like human SERCA2, the suSERCA has a possible 11th transmembrane segment in its extreme C-terminus. The alignment of three sequences (suSERCA, human SERCA2, and rabbit SERCA1a) shows that the Ca2+ binding residues and kinks (required to form the ion-binding pocket) are 100% conserved. The annotated suSERCA gene consists of 24 exons separated by 23 introns and is approximately 30 kb. Western blots show that suSERCA is present in sea urchin eggs and testis, but not in mature spermatozoa. Treatment of live sperm with SERCA inhibitors has no effect on intracellular calcium, suggesting the absence of SERCA in sea urchin spermatozoa.  相似文献   

5.
The spontaneous contractions of cultured chick skeletal muscle fibers were abolished by growth of cultures in the presence of tetrodotoxin (TTX). Inhibition of the contractile activity of cultured myofibers was associated with a marked reduction in the rate of azide-insensitive, ATP-dependent Ca2+ uptake by the total particulate fraction of cell homogenates and by purified sarcoplasmic reticulum. Myosin heavy chain (MHC) accumulation and azide-insensitive, ATP-dependent Ca2+ uptake into a total cell membrane fraction were measured simultaneously in the same culture dish. A decrease in the activity of the ATP-dependent Ca2+ uptake system preceded a significant reduction in MHC content of contraction-inhibited cultures. The reduced rate of Ca2+ uptake observed in the sarcoplasmic reticulum from TTX-treated cultures paralleled a decrease in the amount of enzymatically active Ca2+-transport ATPase. The cellular concentration of the ATPase was estimated from a measurement of the concentration of the Ca2+-dependent, hydroxylamine-sensitive, steady state level of phosphorylated intermediate formed in culture microsomes. In contrast to the changes observed in activity of the sarcoplasmic reticulum ATPase and MHC content of TTX-treated cultures, neither the specific activity of creatine kinase nor the accumulation of the MM isoenzyme were affected. It is therefore concluded that the contractile activity of muscle has a selective effect on the maintenance of the adult skeletal muscle phenotype.  相似文献   

6.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

7.
Antibodies were raised against a calmodulin-binding CaMg-ATPase (Ca2+-transport ATPase) from smooth muscle. The binding of these antibodies to a number of related Ca2+-transport ATPases was studied. Antibodies to the calmodulin-binding ATPase from porcine antrum (stomach) smooth muscle do not only bind to this CaMg-ATPase, but also to the corresponding enzyme in porcine erythrocytes. However, they do not bind to the CaMg-ATPase from sarcoplasmic reticulum of porcine skeletal muscle. The binding of these antibodies to the CaMg-ATPase of smooth muscle, does not inhibit the enzyme activity.  相似文献   

8.
Membrane fractions prepared from smooth muscle of the pig stomach (antral part) contain two Ca2+-dependent phosphoprotein intermediates belonging to different Ca2+-transport ATPases. These alkali-labile phosphoproteins can be separated by electrophoresis in acid medium. The 130 kDa phosphoprotein resembles a corresponding protein in the erythrocyte membrane, whereas the 100 kDa protein resembles that of the Ca2+-transport ATPase in sarcoplasmic reticulum from skeletal muscle. These resemblances are expressed in terms of Mr, reaction to La3+ and in a similar proteolytic degradation pattern. The presence of the calmodulin-stimulated ATPase in mixed membranes from smooth muscle is confirmed by its binding of calmodulin and antibodies against erythrocyte Ca2+-transport ATPase, whereas such binding does not occur with proteins present in the presumed endoplasmic reticulum from smooth muscle.  相似文献   

9.
We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.  相似文献   

10.
One mg protein/ml of sarcoplasmic reticulum (SR) membranes isolated from rabbit skeletal muscle were solubilized with 50 mg/ml of octaethyleneglycol mono n-dodecyl ether (C12E8) in a solution containing 5 mM CaCl2, 0.1 M KCl, and 20% glycerol at pH 7.5. When 30 mg/ml of soybean lecithin was added to this mixture and then incubated with Bio-beads SM-2 at 20 degrees C for 1.5 h to remove the detergent from the mixture, proteoliposomes were formed. This process restored Ca2+-uptake activity to approximately 50% of that of control sR. However, Ca2+-transport was not observed when SR membranes were formed without the addition of soybean lecithin. The reconstituted vesicles also catalyze Ca2+-release, which is coupled to the backward reaction which forms ATP from ADP and P1 in the presence of a Ca2+-gradient across the membrane. When the reconstituted vesicles were subjected to equilibrium centrifugation in a 5 to 25% glycerol density gradient, all of the Ca2+-transport activity was closely associated with the fraction containing soybean liposome.  相似文献   

11.
Although cis-diamminedichloroplatinum (II) (cisplatin) is a potent anticancer drug, clinical use of this agent is highly limited predominantly because of its strong side effects on the kidney and gastrointestinal tracts. We found that cisplatin impaired respiratory function and DNA of mitochondria in renal proximal tubules and small intestinal mucosal cells, thereby inducing apoptosis of epithelial cells. Cisplatin-induced mitochondrial dysfunction and DNA (mtDNA) injury, lipid peroxidation, and apoptosis of epithelial cells in the kidney and small intestine were strongly inhibited by L-carnitine. However, carnitine had no appreciable effect on the tumoricidal action of cisplatin against cancer cells inoculated in the peritoneal cavity. These results indicate that L-carnitine may have therapeutic potential for inhibiting the side effects of cisplatin and other anticancer agents in the kidney and small intestine.  相似文献   

12.
The influence of emotional-pain stress on the properties of the sarcoplasmic reticulum Ca2+-transporting system of the rat heart muscle was studied. The decrease of the Ca2+-dependent component of the Ca2+, Mg2+-ATPase activity, Ca2+-binding capacity and the rate of Ca2+-transport was found in the animals after stress. These alterations in the Ca2+-transporting system were caused by lipid peroxidation and could be prevented by the antioxidant ionol.  相似文献   

13.
A rapid procedure for preparing large quantities of purified erythrocyte Ca2+-transport ATPase is presented. The method involves: (1) fast preparation of calmodulin-deficient, essentially haemoglobin-free, erythrocyte membranes by molecular filtration using Pellicon filters; (2) solubilization of membrane proteins by deoxycholate; and (3) a batch procedure using calmodulin-Sepharose 4B gel for purification of Ca2+-transport ATPase.  相似文献   

14.
The effects of Ca2+, lanthanide ions (Gd3+, La3+ and Pr3+) and membrane potential on the fluorescence of tryptophan and covalently bound fluorescein were analysed in native and fluorescein isothiocyanate (FITC)-labelled sarcoplasmic reticulum vesicles. The binding of Ca2+ and lanthanides to the Ca2+-ATPase increases the fluorescence intensity of tryptophan and decreases the fluorescence intensity of FITC; the dependence of these effects on cation concentration is consistent with the involvement of the high-affinity Ca2+-binding sites of the Ca2+-ATPase in the cation-induced fluorescence changes. The fluorescence of FITC-labelled sarcoplasmic reticulum vesicles is also influenced by membrane potential changes induced by ion substitution. Inside positive potential increases, while inside negative potential decreases, the fluorescence of bound FITC. Smaller potential-dependent changes in tryptophan fluorescence were also observed. The effects of Ca2+, lanthanides and membrane potential on the fluorescence of tryptophan and FITC are discussed in terms of the two major conformations of the Ca2+-ATPase (E1 and E2), that are assumed to alternate during Ca2+ transport. The observations support the suggestion [Dux, Taylor, Ting-Beall & Martonosi (1985) J. Biol. Chem. 260, 11730-11743] that the vanadate-induced crystals of Ca2+-ATPase represent the E2, while the Ca2+ and lanthanide-induced crystals the E1, conformation of the enzyme.  相似文献   

15.
16.
17.
18.
A unique subfamily of calmodulin-dependent Ca2+-ATPases was recently identified in plants. In contrast to the most closely related pumps in animals, plasma membrane-type Ca2+-ATPases, members of this new subfamily are distinguished by a calmodulin-regulated autoinhibitor located at the N-terminal instead of a C-terminal end. In addition, at least some isoforms appear to reside in non-plasma membrane locations. To begin delineating their functions, we investigated the subcellular localization of isoform ACA2p (Arabidopsis Ca2+-ATPase, isoform 2 protein) in Arabidopsis. Here we provide evidence that ACA2p resides in the endoplasmic reticulum (ER). In buoyant density sucrose gradients performed with and without Mg2+, ACA2p cofractionated with an ER membrane marker and a typical "ER-type" Ca2+-ATPase, ACA3p/ECA1p. To visualize its subcellular localization, ACA2p was tagged with a green fluorescence protein at its C terminus (ACA2-GFPp) and expressed in transgenic Arabidopsis. We collected fluorescence images from live root cells using confocal and computational optical-sectioning microscopy. ACA2-GFPp appeared as a fluorescent reticulum, consistent with an ER location. In addition, we observed strong fluorescence around the nuclei of mature epidermal cells, which is consistent with the hypothesis that ACA2p may also function in the nuclear envelope. An ER location makes ACA2p distinct from all other calmodulin-regulated pumps identified in plants or animals.  相似文献   

19.
Incubation of cardiac sarcoplasmic reticulum (SR) in the presence of S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation of phosphatidylethanolamine, increased Ca2+-stimulated ATPase activity. The increase in Ca2+-ATPase activity was not due to changes in the affinity for Ca2+ and was prevented by methyl acetimidate, an inhibitor of phospholipid N-methylation. The results suggest a possible regulatory role of phospholipid N-methylation in SR Ca2+-pump mechanism.  相似文献   

20.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号