首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magalhaes ML  Blanchard JS 《Biochemistry》2005,44(49):16275-16283
The aminoglycoside 3-N-acetyltransferase AAC(3)-IV from Escherichia coli exhibits a very broad aminoglycoside specificity, causing resistance to a large number of aminoglycosides, including the atypical veterinary antibiotic, apramycin. We report here on the characterization of the substrate specificity and kinetic mechanism of the acetyl transfer reaction catalyzed by AAC(3)-IV. The steady-state kinetic parameters revealed a narrow specificity for the acyl-donor and broad range of activity for aminoglycosides. AAC(3)-IV has the broadest substrate specificity of all AAC(3)'s studied to date. Dead-end inhibition and ITC experiments revealed that AAC(3)-IV follows a sequential, random bi-bi kinetic mechanism. The analysis of the pH dependence of the kinetic parameters revealed acid- and base-assisted catalysis and the existence of three additional ionizable groups involved in substrate binding. The magnitude of the solvent kinetic isotope effects suggests that a chemical step is at least partially rate limiting in the overall reaction.  相似文献   

2.
The use of competitive spectrophotometry to measure kinetic constants for enzyme-catalyzed reactions is described. The equation for the progress curve characterizing the kinetic behavior of an enzyme acting simultaneously on two alternative substrates is derived. By the addition of a competition term to the integrated Michaelis-Menten equation, the kinetic constants of an alternative substrate can be evaluated by measuring the competition with a substrate of known kinetic constants in a single experiment. Studies are presented involving the enzymes leucine aminopeptidase (LAP) and carboxypeptidase A (CPA). The results obtained with LAP and CPA showed that the kinetic constants determined using competitive spectrophotometry were in agreement with values cited in the literature or with values determined by single substrate enzyme kinetics.  相似文献   

3.
The reaction of trimethylamine dehydrogenase with trimethylamine   总被引:1,自引:0,他引:1  
The reductive half-reaction of trimethylamine dehydrogenase with its physiological substrate trimethylamine has been examined by stopped-flow spectroscopy over the pH range 6.0-11.0, with attention focusing on the fastest of the three kinetic phases of the reaction, the flavin reduction/substrate oxidation process. As in previous work with the slow substrate diethylmethylamine, the reaction is found to consist of three well resolved kinetic phases. The observed rate constant for the fast phase exhibits hyperbolic dependence on the substrate concentration with an extrapolated limiting rate constant (klim) greater than 1000 s-1 at pH above 8.5, 10 degrees C. The kinetic parameter klim/Kd for the fast phase exhibits a bell-shaped pH dependence, with two pKa values of 9.3 +/- 0.1 and 10. 0 +/- 0.1 attributed to a basic residue in the enzyme active site and the ionization of the free substrate, respectively. The sigmoidal pH profile for klim gives a single pKa value of 7.1 +/- 0. 2. The observed rate constants for both the intermediate and slow phases are found to decrease as the substrate concentration is increased. The steady-state kinetic behavior of trimethylamine dehydrogenase with trimethylamine has also been examined, and is found to be adequately described without invoking a second, inhibitory substrate-binding site. The present results demonstrate that: (a) substrate must be protonated in order to bind to the enzyme; (b) an ionization group on the enzyme is involved in substrate binding; (c) an active site general base is involved, but not strictly required, in the oxidation of substrate; (d) the fast phase of the reaction with native enzyme is considerably faster than observed with enzyme isolated from Methylophilus methylotrophus that has been grown up on dimethylamine; and (e) a discrete inhibitory substrate-binding site is not required to account for excess substrate inhibition, the kinetic behavior of trimethylamine dehydrogenase can be readily explained in the context of the known properties of the enzyme.  相似文献   

4.
M N Malik 《Biochemistry》1978,17(1):27-32
The kinetic properties of purified smooth muscle myosin, free of actin, have been examined. Analysis of the steady-state kinetic data revealed an intermediary plateau region on the substrate saturation curves. In addition, these data, when analyzed by Hill and Lineweaver and Burk plots, indicate both positive and negative cooperativity, suggesting at least four substrate binding sites. The plateau region was abolished when the kinetic measurements were made at pH 5.5 and 9.0. Both positive and negative cooperative effects were absent at pH 9.0 and hyperbolic kinetics was observed. In contrast, at pH 5.5, although the plateau region was abolished, the enzyme exhibited positive cooperativity of substrate binding. When either heated or urea treated enzyme was used for kinetic measurements: (i) the plateau region shifted toward higher substrate concentration range; (ii) the cooperativity of binding sites was lost at low substrate concentrations but was instead seen at higher concentrations; and (iii) the Vmax was doubled. These data have been interpreted as due to ligand-induced conformational changes in the enzyme according to J. Teipel and D. E. Koshland, Jr. (1969).  相似文献   

5.
Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi‐substrate kinetic parameters of a recombinant human glycine N‐acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC–ESI‐MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi–Bi and/or ping‐pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl‐CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis–Menten reaction mechanism.  相似文献   

6.
Substrate inhibition is a common phenomenon in enzyme chemistry, which is observed only with a fast-reacting substrate enantiomer. We report here for the first time substrate inhibition of an enantioselective enzyme by both substrate enantiomers. The enantioselective substrate inhibition, i.e., different mode of inhibition by each substrate enantiomer, of (S)-specific omega-transaminase was found with various chiral amines. A kinetic model based on ping-pong bi-bi mechanism has been developed and kinetic parameters were measured. The kinetic model reveals that the inhibition by (R)-amine results from formation of Michaelis complex with enzyme-pyridoxal 5'-phosphate, whereas the inhibition by (S)-amine results from the formation of the complex with enzyme-pyridoxamine 5'-phosphate. Substrate inhibition constants (K(SI)) of each (S)-enantiomer of four chiral amines showed a linear correlation with those of cognate (R)-amines. Such a correlation was also found between the K(SI) values and Michaelis constants of (S)-amines. These correlations indicate that recognition mechanisms and active site structures of both enzyme-pyridoxal 5'-phosphate, enzyme-pyridoxamine 5'-phosphate are similar. Taken together with the results, high propensity for non-productive substrate binding strongly suggests that binding pockets of the omega-transaminase is loosely defined, which accounts for the enantioselective substrate inhibition.  相似文献   

7.
Aims:  To determine the underlying substrate utilization mechanism in the logistic equation for batch microbial growth by revealing the relationship between the logistic and Monod kinetics. Also, to determine the logistic rate constant in terms of Monod kinetic constants.
Methods and Results:  The logistic equation used to describe batch microbial growth was related to the Monod kinetics and found to be first-order in terms of the substrate and biomass concentrations. The logistic equation constant was also related to the Monod kinetic constants. Similarly, the substrate utilization kinetic equations were derived by using the logistic growth equation and related to the Monod kinetics.
Conclusion:  It is revaled that the logistic growth equation is a special form of the Monod growth kinetics when substrate limitation is first-order with respect to the substrate concentration. The logistic rate constant ( k ) is directly proportional to the maximum specific growth rate constant ( μ m) and initial substrate concentration ( S 0) and also inversely related to the saturation constant ( K s).
Significance and Impact of the Study:  The semi-empirical logistic equation can be used instead of Monod kinetics at low substrate concentrations to describe batch microbial growth using the relationship between the logistic rate constant and the Monod kinetic constants.  相似文献   

8.
Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters—without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes.  相似文献   

9.
In contrast to holo-enzyme (c6r6), catalytic subunits (c3) of Escherichia coli aspartate transcarbamylase (carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) do not exhibit allosteric interactions or inhibition effects that complicate kinetic investigations of substrate binding order. Equilibrium isotope-exchange kinetic probes of c3 at pH 7.0 and 30 degrees C produced kinetic saturation patterns consistent with a strongly preferred order random kinetic mechanism, in which carbamoyl phosphate binds prior to aspartate and carbamoyl aspartate is released before Pi. Weak substrate inhibition effects observed with c6r6 did not occur with c3, possibly due to decreased affinity for ligands at the dianion inhibition site.  相似文献   

10.
The decomposition of the organic substrate present in wine distillery wastewaters (WDW) is studied in batch reactors, by an ozonation process, by an aerobic degradation and by another ozonation of the aerobically pretreated wastewaters. In the ozonation process, the effects on the substrate removal obtained of the temperature, pH and the presence of H2O2 and UV radiation are established, and an approximate kinetic study is conducted which leads to the evaluation of the apparent kinetic constants for the substrate reduction. In the aerobic degradation treatment, the evolution of the substrate, biomass and total phenolic compounds are followed during the process, and a kinetic study is performed by using the Contois model, which applied to the experimental data provides the specific kinetic parameters qmax and K1. Finally, in the ozonation of the pretreated wastewaters, the?influence of the operating variables is established, and the effect of this aerobic pretreatment on the substrate removal and kinetic constants obtained in the ozonation stage is also discussed.  相似文献   

11.
B N Leichus  J S Blanchard 《Biochemistry》1992,31(12):3065-3072
Lipoamide dehydrogenase is a flavoprotein which catalyzes the reversible oxidation of dihydrolipoamide, Lip(SH)2, by NAD+. The ping-pong kinetic mechanism involves stable oxidized and two-electron-reduced forms. We have investigated the rate-limiting nature of proton transfer steps in both the forward and reverse reactions catalyzed by the pig heart enzyme by using a combination of alternate substrates and solvent kinetic isotope effect studies. With NAD+ as the variable substrate, and at a fixed, saturating concentration of either Lip(SH)2 or DTT, inverse solvent kinetic isotope effects of 0.68 +/- 0.05 and 0.71 +/- 0.05, respectively, were observed on V/K. Solvent kinetic isotope effects on V of 0.91 +/- 0.07 and 0.69 +/- 0.02 were determined when Lip(SH)2 or DTT, respectively, was used as reductant. When Lip(SH)2 or DTT was used as the variable substrate, at a fixed concentration of NAD+, solvent kinetic isotope effects of 0.74 +/- 0.06 and 0.51 +/- 0.04, respectively, were observed on V/K for these substrates. Plots of the kinetic parameters versus mole fraction D2O (proton inventories) were linear in all cases. Solvent kinetic isotope effect measurements performed in the reverse direction using NADH as the variable substrate showed equivalent, normal solvent kinetic isotope effects on V/KNADH when oxidized lipoamide, lipoic acid, or DTT were present at fixed, saturating concentrations. Solvent kinetic isotope effects on V were equal to 1.5-2.1. When solvent kinetic isotope effect measurements were performed using the disulfide substrates lipoamide, lipoic acid, or DTT as the variable substrates, normal kinetic isotope effects on V/K of 1.3-1.7 were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Rho-Kinase is a serine/threonine kinase that is involved in the regulation of smooth muscle contraction and cytoskeletal reorganization of nonmuscle cells. While the signal transduction pathway in which Rho-Kinase participates has been and continues to be extensively studied, the kinetic mechanism of Rho-Kinase-catalyzed phosphorylation has not been investigated. We report here elucidation of the kinetic mechanism for Rho-Kinase by using steady-state kinetic studies. These studies used the kinase domain of human Rho-Kinase II (ROCK-II 1-534) with S6 peptide (biotin-AKRRRLSSLRA-NH(2)) as the phosphorylatable substrate. Double-reciprocal plots for two-substrate kinetic data yielded intersecting line patterns with either ATP or S6 peptide as the varied substrate, indicating that Rho-Kinase utilized a ternary complex (sequential) kinetic mechanism. Dead-end inhibition studies were used to investigate the order of binding for ATP and the peptide substrate. The ATP-competitive inhibitors AMP-PCP and Y-27632 were noncompetitive inhibitors versus S6 peptide, and the S6 peptide analogue S6-AA (acetyl-AKRRRLAALRA-NH(2)) was a competitive inhibitor versus S6 peptide and a noncompetitive inhibitor versus ATP. These results indicated a random order of binding for ATP and S6 peptide.  相似文献   

13.
The kinetic behavior of alpha-chymotrypsin was studied in water-DMSO mixtures at concentrations of the organic solvent that do not cause irreversible denaturation of the enzyme. Various substrates (N-substituted derivatives of L-tyrosine) were found to display substantially different kinetic patterns of interaction with alpha-chymotrypsin, which can be described by totally different kinetic schemes. The differences were ascribed to competition between the N-acyl group of the substrate and the DMSO molecule at the S2-site of substrate binding to the active site of the enzyme.  相似文献   

14.
The kinetic behavior of five models for biological transport, only one of which is based on the classical carrier mechanism, is investigated. All give hyperbolic substrate saturation curves in accord with experimental observations on many systems. Several simple kinetic tests with substrates and competitive inhibitors serve to exclude or confirm proposed models. The tests involve measuring rates of efflux of radioactive substrate in the presence of (i) a competitive inhibitor outside the cell; (ii) inhibitor inside and outside; and (iii) unlabeled substrate outside. Rules for testing hypothetical mechanisms are presented in tables which may be consulted directly, disregarding the mathematical derivation.  相似文献   

15.
DnaK, an Hsp70 molecular chaperone, processes its substrates in an ATP-driven cycle, which is controlled by the co-chaperones DnaJ and GrpE. The kinetic analysis of substrate binding and release has as yet been limited to fluorescence-labeled peptides. Here, we report a comprehensive kinetic analysis of the chaperone action with protein substrates. The kinetic partitioning of the (ATP x DnaK) x substrate complexes between dissociation and conversion into stable (ADP x DnaK) x substrate complexes is determined by DnaJ. In the case of substrates that allow the formation of ternary (ATP x DnaK) x substrate x DnaJ complexes, the cis-effect of DnaJ markedly accelerates ATP hydrolysis. This triage mechanism efficiently selects from the (ATP x DnaK) x substrate complexes those to be processed in the chaperone cycle; at 45 degrees C, the fraction of protein complexes fed into the cycle is 20 times higher than that of peptide complexes. The thermosensor effect of the ADP/ATP exchange factor GrpE retards the release of substrate from the cycle at higher temperatures; the fraction of total DnaK in stable (ADP x DnaK) x substrate complexes is 2 times higher at 45 degrees C than at 25 degrees C. Monitoring the cellular situation by DnaJ as nonnative protein sensor and GrpE as thermosensor thus directly adapts the operational mode of the DnaK system to heat shock conditions.  相似文献   

16.
The kinetics of biodegradation of TCE in the biofilter packed with wood charcoal and inoculated with diazotrophic bacterial community had been investigated. Use of Michaelis-Menten type model showed that substrate inhibition was present in the system. The kinetic model proposed by Edwards (1970) was used to calculate kinetic parameters-maximum elimination capacity (EC(max)), substrate constant (K(s)), and inhibition constant (K(I)). The model fitted well with the experimental data and the EC(max) was found to be in the range of 10.8-6.1 g/m(3) h. The K(s) values depended upon substrate concentration and ranged from 0.024 to 0.043 g/m(3) indicating the high affinity of diazotrophs for TCE. The K(I) values were low and nearly constant (0.011-0.015 g/m(3)) indicating a moderate substrate inhibition.  相似文献   

17.
The Michaelis-Menten model, and the existence of a single active site for the interaction of substrate with drug metabolizing enzyme, adequately describes a substantial number of in vitro metabolite kinetic data sets for both clearance and inhibition determination. However, in an increasing number of cases (involving most notably, but not exclusively, CYP3A4), atypical kinetic features are observed, e.g., auto- and heteroactivation; partial, cooperative, and substrate inhibition; concentration-dependent effector responses (activation/inhibition); limited substrate substitution and inhibitory reciprocity necessitating sub-group classification. The phenomena listed above cannot be readily interpreted using single active site models and the literature indicates that three types of approaches have been adopted. First the 'nai ve' approach of using the Michaelis-Menten model regardless of the kinetic behaviour, second the 'empirical' approach (e.g., employing the Hill or uncompetitive inhibition equations to model homotropic phenomena of sigmoidicity and substrate inhibition, respectively) and finally, the 'mechanistic' approach. The later includes multisite kinetic models derived using the same rapid equilibrium/steady-state assumptions as the single-site model. These models indicate that 2 or 3 binding sites exist for a given CYP3A4 substrate and/or effector. Multisite kinetic models share common features, depending on the substrate kinetics and the nature of the effector response observed in vitro, which allow a generic model to be proposed. Thus although more complex than the other two approaches, they show more utility and can be comprehensively applied in relatively simple versions that can be readily generated from generic model. Multisite kinetic features, observed in isolated hepatocytes as well as in microsomes from hepatic tissue and heterologous expression systems, may be evident in substrate depletion-time profiles as well as in metabolite formation rates. Failure to adequately account for multisite kinetic phenomena will compromise any attempts to predict human drug clearance and drug-drug interaction potential from in vitro data.  相似文献   

18.
A kinetic model for product formation of microbial and mammalian cells   总被引:15,自引:0,他引:15  
Growth of microbial and mammalian cells can be classified into substrate-limited and substrate-sufficient growth according to the relative availability of the substrate (carbon and energy source) and other nutrients. It has been observed for a number of microbial and mammalian cells that the consumption rate of substrate and energy (ATP) is generally higher under substratesufficient conditions than under substrate limitation. Accordingly, the product formation under substrate excess often exhibits different patterns from those under substrate limitation. The extent of increase or decrease in product formation may depend not only on the nature of limitation and cell growth rate but also on the residual substrate concentration in a relatively wide range. The product formation kinetic models existing in literature cannot describe these effects. In this study, the Luedeking-Piret kinetic is extended to include a term describing the effect of residual substrate concentration. The extended model has a similar structure to the kinetic model for substrate and energy consumption rate recently proposed by Zeng and Deckwer. The applicability of the extended model is demonstrated with three microbial cultures for the production of primary metabolites and three hybridoma cell cultures for the production of ammonia and lactic acid over a wide range of substrate concentration. The model describes the product formation in all these cultures satisfactorily. Using this model, the range of residual substrate concentration, in which the product formation is affected, can be quantitatively assessed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
The kinetic behavior of the alpha-chymotrypsin-catalyzed hydrolysis of the two p-nitroanilide substrates succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (Suc-Ala-Ala-Pro-Phe-pNA) and benzoyl-L-Tyr-p-nitroanilide (Bz-Tyr-pNA) was modeled and simulated for two different systems, namely for an aqueous solution and for a vesicle system, which was composed of phospholipid vesicles containing entrapped alpha-chymotrypsin. In the case of the vesicles, the substrate was added to the bulk, exovesicular aqueous phase. The experimentally determined time-dependence of product (p-nitroaniline) formation was modeled by considering the kinetic behavior of the enzyme and-in the case of vesicles-the substrate permeability across the bilayer membrane. In aqueous solution-without vesicles-the kinetic constants kcat and KS (respectively KM) were determined from fitting the model to experimental data of batch product concentration-time curves. The results were in good agreement with the corresponding values obtained from initial velocity measurements. For the vesicle system, using the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), simulation showed that the substrate permeation across the bilayer was rate limiting. Using experimental data, we could obtain the substrate permeability coefficient for Bz-Tyr-pNA by parametric fitting as 2. 45 x 10(-7) cm/s.  相似文献   

20.
A Sobieszek 《Biochemistry》1985,24(5):1266-1274
Phosphorylation of vertebrate smooth muscle myosin or its isolated 20 000-dalton light chains by myosin light-chain kinase (MLCK) was found to follow first-order kinetics not only at low ([M] much less than Km) but also at high ([M] greater than or equal to Km) substrate concentration. This observation can most simply be explained by a product inhibition for which the Michaelis constants (Km) of the enzyme for the substrate (dephosphorylated myosin) and for the product (phosphorylated myosin) are approximately the same. For such a case, integration of the kinetic velocity equation gives an exponential formula similar to that of a true first-order reaction, the only difference being that its rate constant (k) depends additionally on the initial substrate concentration ([M]0). The standard kinetic constants (k, Km, Vmax) have been calculated by using this pseudo-first-order relationship. Independent evidence for the validity of the derived kinetic relationship was obtained from binding studies with myosin and MLCK. These showed that MLCK binds to phosphorylated and dephosphorylated myosin with approximately equal affinity (Ks = 30 X 10(-9) M). The possible applicability of the same kinetic relationship to other enzyme systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号