首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The virally encoded proteases from human immunodeficiency virus (HIV) and avian myeloblastosis virus (AMV) have been compared relative to their ability to hydrolyze a variant of the three-domain Pseudomonas exotoxin, PE66. This exotoxin derivative, missing domain I and referred to as LysPE40, is made up of a 13-kilodalton NH2-terminal translocation domain II connected by a segment of 40 amino acids to enzyme domain III of the toxin, a 23-kilodalton ADP-ribosyltransferase. HIV protease hydrolyzes two peptide bonds in LysPE40, a Leu-Leu bond in the interdomain region and a Leu-Ala bond in a nonstructured region three residues in from the NH2-terminus. Neither of these sites is cleaved by the AMV enzyme; hydrolysis occurs, instead, at an Asp-Val bond in another part of the interdomain segment and at a Leu-Thr bond in the NH2-terminal region of domain II. Synthetic peptides corresponding to these cleavage sites are hydrolyzed by the individual proteases with the same specificity displayed toward the protein substrate. Peptide substrates for one protease are neither substrates nor competitive inhibitors for the other. A potent inhibitor of HIV type 1 protease was more than 3 orders of magnitude less active toward the AMV enzyme. These results suggest that although the crystallographic models of Rous sarcoma virus protease (an enzyme nearly identical to the AMV enzyme) and HIV type 1 protease show a high degree of similarity, there exist structural differences between these retroviral proteases that are clearly reflected by their kinetic properties.  相似文献   

2.
Residues 16-20 of the beta-amyloid peptide (A beta) function as a self-recognition element during A beta assembly into fibers. Peptides containing this motif retain the ability to interact with A beta and, in some cases, potently inhibit its assembly. Replacing L- with D-amino acids could stabilize such peptides and permit their evaluation as therapeutic agents for Alzheimer's disease. Here we have assessed the effect that such a chiral reversal has on inhibitory potency. D-enantiomers of five peptides, KLVFFA, KKLVFFA, KFVFFA, KIVFFA, and KVVFFA, were unexpectedly more active as inhibitors in an in vitro fibrillogenesis assay. Circular dichroism showed that D-KLVFFA more effectively prevented A beta adopting the beta-sheet secondary structure correlated with fibrillogenesis. Electron microscopy showed that fiber formation was also more strongly inhibited by D-KLVFFA. Heterochiral inhibition was confirmed using D-A beta, on the principle that enantiomeric proteins exhibit reciprocal chiral biochemical interactions. With D-Abeta, L-KLVFFA was the more potent inhibitor, rather than d-KLVFFA. Most significantly, D-peptides were more potent at reducing the toxicity of both A beta1-40 and A beta 1-42 toward neuronal cells in culture. This unforeseen heterochiral stereoselectivity of A beta for D-peptide inhibitors should be considered during future design of peptide-based inhibitors of A beta neurotoxicity and fibrillogenesis.  相似文献   

3.
We have created a system in which synthetically produced novel bioactive peptides can be expressed in vivo in Escherichia coli. Twenty thousand of these peptides were screened and 21 inhibitors were found that could inhibit the growth of E. coli on minimal media. The inhibitors could be placed into one of two groups, 1-day inhibitors, which were partially inhibitory, and 2-day inhibitors, which were completely inhibitory. Sequence analysis showed that two of the most potent inhibitors were actually peptide-protein chimeras in which the peptides had become fused to the 63 amino acid Rop protein which was also contained in the expression vector used in this study. Given that Rop is known to form an incredibly stable structure, it could be serving as a stabilizing motif for these peptides. Sequence analysis of the predicted coding regions from the next 10 most inhibitory peptides showed that four of the 10 peptides contained one or more proline residues either at or very near the C-terminal end of the peptide which could act to prevent degradation by peptidases. Collectively, based on what we observed in our screen of synthetic bioactive peptides that could prevent the growth of E. coli and what has been learned from structural studies of naturally occurring bioactive peptides, the presence of a stabilizing motif seems to be important for small peptides, if they are to be biologically active.  相似文献   

4.
5.
Basak A  Lotfipour F 《FEBS letters》2005,579(21):4813-4821
A peptide was designed from reactive site loop structure of alpha1 Antitrypsin Portland known as alpha1 PDX as a novel mini-PDX inhibitor of furin. The sequence was derived from (367-394) that contains the crucial furin cleavage motif RIPR382. A P3 mutant replacing Ile380 by Leu was prepared as a first model peptide. A Cys residue was inserted at each terminal of the peptide for purpose of cyclisation which was accomplished by air or iodine-induced oxidation. This mini-PDX peptide both cyclic and acyclic form inhibited in vitro furin activity (IC50 in nM) when measured against either substrates Boc-RVRRdown double arrow MCA or QVEGF-C [Abz-QVHSIIRRdown double arrow SLP-Y(NO2)-A-CONH2, Abz=2-amino benzoic acid and Y(NO2)=3-nitro tyrosine], latter being derived from vascular endothelial growth factor-C (VEGF-C) processing site. The geometrically constrained structure mimicking PDX reactive loop is crucial for enzyme inhibition. Our study further revealed that both mini-PDX peptides inactivate furin in a slow tight binding manner, with disulfide-bridged cyclic form being slightly more potent. Unlike PDX, these peptides inhibit furin via a different mechanistic pathway. The study provides an alternate strategy for development of efficient peptide-based inhibitors of Proprotein Convertases including furin.  相似文献   

6.
Using a combinatorial chemistry approach, a decapaptide library containing the N-terminal fragment of trypsin inhibitor CMTI-III was synthesized by the solid-phase method. The peptide library was screened for trypsin and chymotrypsin inhibitory activity applying the iterative method in solution. Two decapeptides were selected and resynthesized for each enzyme. The association equilibrium constants ((1.1+/-0.2)x10(8) and (7.3+/-1.6)x10(7)) determined for peptides with trypsin inhibitory activity indicate that they are 3-4-fold less active than the CMTI inhibitors. On the other hand, they are significantly more effective as compared with the starting sequence. Two peptides selected as chymotrypsin inhibitors displayed about 10 times higher activity (1.7+/-0.4)x10(7) and (1.1+/-0.2)x10(7), respectively) than those monosubstituted in position P(1) of the CMTI-III analogue. Considering low molecular weight of peptides selected and the lack of conformational constraints in their structures, the results are promising. They are good templates as starting sequences for further selection of small, peptidomimetic proteinase inhibitors.  相似文献   

7.
Topoisomerases relieve topological tension in DNA by breaking and rejoining DNA phosphodiester bonds. Type IB topoisomerases such as vaccinia topoisomerase (vTopo) and human topoisomerase I are structurally and mechanistically similar to the tyrosine recombinase family of enzymes, which includes bacteriophage lambda Integrase (Int). Previously, our laboratory identified peptide inhibitors of Int from a synthetic peptide combinatorial library. The most potent of these peptides also inhibit vTopo. Here, we used the same mixture-based screening procedure to identify peptide inhibitors directly against vTopo using a plasmid relaxation assay. The two most potent new peptides identified, WYCRCK and KCCRCK, inhibit plasmid relaxation, DNA cleavage and Holliday junction (HJ) resolution mediated by vTopo. The peptides tested bind double-stranded DNA at high concentrations but do not appear to displace the enzyme from its DNA substrate. WYCRCK binds specifically to HJ and perturbs the central base-pairing. This peptide also accumulates HJ intermediates when it inhibits Int-mediated recombination, whereas KCCRCK does not. Interestingly, WYCRCK shares four amino acids with a peptide identified against Int, WRWYCR. The octapeptide WRWYCRCK, containing amino acids from both hexapeptides, is more potent than either against vTopo. All peptides are less potent against the type IA Escherichia coli topoisomerase I or against restriction endonucleases. Like the Int-inhibitory peptide WRWYCR, WYCRCK binds to HJs, and both inhibit junction resolution by vTopo. Our results suggest that the newly identified WYCRCK and peptide WRWYCR interact with a distorted DNA intermediate arising during vTopo-mediated catalysis, or interfere with specific interactions between vTopo and DNA.  相似文献   

8.
As the prevalence of AIDS continues to grow, and current therapeutic agents begin to lose efficacy, the need for alternative treatments to combat HIV has become significantly greater. Targeting the highly conserved dimerization interface of HIV protease (PR) with interfacial peptides has been shown to reduce the activity of the enzyme due to generation of inactive monomers. The potency of these peptide-based inhibitors has been dramatically increased by cross-linking the interfacial sequences derived from HIV PR. This review focuses on a variety of strategies to develop potent, low-molecular-weight dimerization inhibitors of HIV PR.  相似文献   

9.
We report the synthesis of biodegradable polyvalent inhibitors of anthrax toxin based on poly-L-glutamic acid (PLGA). These biocompatible polyvalent inhibitors are at least 4 orders of magnitude more potent than the corresponding monovalent peptides in vitro and are comparable in potency to polyacrylamide-based inhibitors of anthrax toxin assembly. We have elucidated the influence of peptide density on inhibitory potency and demonstrated that these inhibitory potencies are limited by kinetics, with even higher activities seen when the inhibitors are preincubated with the heptameric receptor-binding subunit of anthrax toxin prior to exposure to cells. These polyvalent inhibitors are also effective at neutralizing anthrax toxin in vivo and represent attractive leads for designing biocompatible anthrax therapeutics.  相似文献   

10.
Peptide aldehyde inhibitors of the chymotrypsin-like activity of the proteasome (CLIP) such as N-acetyl-Leu-Leu-Nle-H (or ALLN) have been shown previously to inhibit the secretion of beta-amyloid peptide (A beta) from cells. To evaluate more fully the role of the proteasome in this process, we have tested the effects on A beta formation of a much wider range of peptide-based inhibitors of CLIP than published previously. The inhibitors tested included several peptide boronates, some of which proved to be the most potent peptide-based inhibitors of beta-amyloid production reported so far. We found that the ability of the peptide aldehyde and boronate inhibitors to suppress A beta formation from cells correlated extremely well with their potency as CLIP inhibitors. Thus, we conclude that the proteasome may be involved either directly or indirectly in A beta formation.  相似文献   

11.
Peptide inhibitors of angiotensin I-converting enzyme (peptidyldipeptide hydrolase, EC 3.4.15.1) were produced by digesting gelatin with bacterial collagenase. The inhibitors were isolated from the digests with a combination of alcohol fractionation, treatment with Amberlite CG-50 column, gel filtration through Sephadex G-25, and Dowex 50 column and paper chromatography. Nine peptide fractions were purified to apparent homogeneity judging by thin-layer and ion-exchange column chromatography, and amino acid composition. Amino acid sequences of the peptides were determined: 2 were found to be mixtures of peptides and the sequence of another was only partially determined. Six of the peptides were potent inhibitors of the converting enzyme, while the other three were less active. 6 peptides were substrates for the enzyme. The enzyme released a dipeptide, Ala-Hyp from one peptide and was strongly inhibited by this dipeptide. The remainder of the parent peptides was a less effective inhibitor.  相似文献   

12.
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a beta-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 A N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba67,95]HIVPR and [Lys7,Ile33,Aba67,95]HIVPR used in this work were shown to have very similar crystal structures.  相似文献   

13.
Cholix toxin from Vibrio cholerae is a novel mono‐ADP‐ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high‐resolution X‐ray structure of full‐length cholix toxin in the apo form, NAD+ bound, and 10 structures of the cholix catalytic domain (C‐domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P‐series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD+ was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active‐site loops (R‐loop). The resulting structural models were used to evaluate the interaction energies and for 3D‐QSAR modeling. Implications for a rational drug design approach for mART toxins were derived. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A phage display library displaying random peptides 15 amino acids in length was screened for peptides that interact with soybean (Glycine max L.) CDPKalpha, an isoform of calcium-dependent protein kinase (EC 2.7.1.37). Interaction of phage displaying the peptide RHPTLTRSPTLRNIQ with CDPKalpha was confirmed in an independent binding assay. A synthetic peptide corresponding to this sequence plus the surrounding amino acids AERHPTLTRSPTLRNIQPPC was synthesized and found to be a substrate of CDPK isoforms alpha, beta, and gamma. A second random peptide phage display library was constructed that displayed the substrate peptide sequence plus an additional 10 random amino acids on its amino-terminal side. Nine new peptides were obtained from the screening, all of which were phosphorylated by CDPKalpha. Sequence VSPRSFWTTWRHPTLTRSPTLRNIQ appeared twice in the screen. Because it agreed well with the consensus phosphorylation site of CDPKs, its coding sequence was cloned and stably transformed into tobacco cells. The substrate peptide expressed in tobacco was phosphorylated by recombinant CDPKalpha in vitro and by endogenous CDPK in vivo. Increased phosphorylation of the peptide substrate in response to hydrogen peroxide treatment was observed in transgenic tobacco cells. These results show that the peptide substrate expressed in tobacco cells can be used as a CDPK activity reporter for in vivo studies.  相似文献   

15.
The bradykinin-potentiating peptides from Bothrops jararaca venom are the most potent natural inhibitors of the angiotensin-converting enzyme. The biochemical and biological features of these peptides were crucial to demonstrate the pivotal role of the angiotensin-converting enzyme in blood pressure regulation. In the present study, seven bradykinin-potentiating peptides were identified within the C-type natriuretic peptide precursor cloned from snake brain. The bradykinin-potentiating peptides deduced from the B. jararaca brain precursor are strong in vitro inhibitors of the angiotensin-converting enzyme (nanomolar range), and also potentiate the bradykinin effects in ex vivo and in vivo experiments. Two of these peptides are novel bradykinin-potentiating peptides, one of which displays high specificity toward the N-domain active site of the somatic angiotensin-converting enzyme. In situ hybridization studies revealed the presence of the bradykinin-potentiating peptides precursor mRNAs in distinct regions of the B. jararaca brain, such as the ventromedial hypothalamus, the paraventricular nuclei, the paraventricular organ, and the subcommissural organ. The biochemical and pharmacological properties of the brain bradykinin-potentiating peptides, their presence within the neuroendocrine regulator C-type natriuretic peptide precursor, and their expression in regions of the snake brain correlated to neuroendocrine functions, strongly suggest that these peptides belong to a novel class of endogenous vasoactive peptides.  相似文献   

16.
Abstract: Tetanus exotoxin inhibited Ca2+-dependent cate-cholamine secretion in a dose-dependent manner in digito-nin-permeabilized chromaffin cells. The inhibition was specific for tetanus exotoxin and the B fragment of tetanus toxin; the C fragment had no effect. Inhibition required the introduction of toxin into the cell, and was not seen when intact cells were preincubated with the toxin or toxin fragments. The degree of inhibition was related to the length of preincubation with toxin, as well as the concentration of toxin used. A short preincubation with toxin was sufficient to inhibit secretion, and the continued presence of toxin in the incubation medium was not required during the incubation with Ca2+. The inhibition of secretion by tetanus toxin or the B fragment was not overcome with increasing Ca2+ concentrations. Tetanus toxin also inhibited catechol-amine secretion enhanced by phorbol ester-induced activation of protein kinase C. Thus, the toxin or a proteolytic fragment of the toxin can enter digitonin-permeabilized cells to interact with a component of the Ca2+-dependent exocytotic pathway to inhibit secretion.  相似文献   

17.
P Spee  J Subjeck  J Neefjes 《Biochemistry》1999,38(32):10559-10566
Transient interactions between molecular chaperones and nascent polypeptide chains assist protein folding in the endoplasmic reticulum. In an experimental setting that resembles the ER, we have used peptides as model substrates to identify and compare substrate specificities of ER-resident chaperones. The ER-located peptide transporter TAP was used to introduce peptides into the lumen of microsomes. In addition to PDI and gp96, previously identified as peptide-binding chaperones in the ER, we show that ERp72, calnexin, and grp170 interact with TAP-translocated peptides. The chaperones that have been identified can all bind peptide substrates that range from 8 to 40 amino acids in a manner independent of ATP. In addition, these chaperones exhibit broad and largely overlapping, however not identical, substrate selectivities. Our data indicate that peptide translocation into microsomes via TAP can be used as a method to monitor substrate selectivities of ER-resident chaperones. The implications of the observed preferences for chaperone-substrate interactions and for chaperones applied as vehicles in peptide-based vaccination strategies will be discussed.  相似文献   

18.
Synthetic peptides corresponding to the carboxyl terminus of the fibrinogen gamma chain inhibit the binding of fibrinogen, fibronectin, and von Willebrand factor to platelets, yet the active decapeptide sequence has only been found in fibrinogen to date. In contrast, all three proteins contain Arg-Gly-Asp sequences, and peptides containing Arg-Gly-Asp are potent inhibitors of their binding to activated platelets. We have analyzed the relationship between these peptide sets by direct binding assays. H12 (gamma 400-411) inhibited the binding of an Arg-Gly-Asp-containing peptide to platelets with similar dose response to inhibition of fibronectin binding. We have previously reported that GPIIb-IIIa binds to immobilized Arg-Gly-Asp peptides and can be eluted by Arg-Gly-Asp-containing peptides in solution. Both H12 and L10 (gamma 402-411) completely eluted GPIIb-IIIa bound to immobilized Arg-Gly-Asp peptides. Conversely, when GPIIb-IIIa was bound to immobilized L10, either L10 or an Arg-Gly-Asp peptide could elute it. Peptide specificity was established by the failure of Gly-Arg-Gly-Glu-Ser-Pro or acetylated L10 to elute GPIIb-IIIa from the immobilized peptides. These results indicate that the two peptide sets interact with the same receptor which contains GPIIb-IIIa.  相似文献   

19.
The design of polyvalent molecules, consisting of multiple copies of a biospecific ligand attached to a suitable scaffold, represents a promising approach to inhibit pathogens and oligomeric microbial toxins. Despite the increasing interest in structure-based drug design, few polyvalent inhibitors based on this approach have shown efficacy in vivo. Here we demonstrate the structure-based design of potent biospecific heptavalent inhibitors of anthrax lethal toxin. Specifically, we illustrate the ability to design potent polyvalent ligands by matching the pattern of binding sites on the biological target. We used a combination of experimental studies based on mutagenesis and computational docking studies to identify the binding site for an inhibitory peptide on the heptameric subunit of anthrax toxin. We developed an approach based on copper-catalyzed azide-alkyne cycloaddition (click-chemistry) to facilitate the attachment of seven copies of the inhibitory peptide to a β-cyclodextrin core via a polyethylene glycol linker of an appropriate length. The resulting heptavalent inhibitors neutralized anthrax lethal toxin both in vitro and in vivo and showed appreciable stability in serum. Given the inherent biocompatibility of cyclodextrin and polyethylene glycol, these potent well-defined heptavalent inhibitors show considerable promise as anthrax antitoxins.  相似文献   

20.
Amyloid proteins can aggregate into insoluble fibrils and form amyloid deposits in the human brain, which is the hallmark of many neurodegenerative diseases. Promising strategies toward pathological amyloid proteins and deposition include investigating inhibitors that can disrupt amyloid aggregation or induce misfolding protein degradation. In this review, recent progress of peptide-based inhibitors, including amyloid sequence–derived inhibitors, designed peptides, and peptide mimics, is highlighted. Based on the increased understanding of peptide design and precise amyloid structures, these peptides exhibit advanced inhibitory activities against fibrous aggregation as well as enhanced druggability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号