首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccinia virus (VV) membrane biogenesis is a poorly understood process. It has been proposed that cellular membranes derived from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) are incorporated in the early stages of virion assembly. We have recently shown that the VV 21-kDa (A17L gene) envelope protein is essential for the formation of viral membranes. In the present work, we identify a 15-kDa VV membrane protein encoded by the A14L gene. This protein is phosphorylated and myristylated during infection and is incorporated into the virion envelope. Both the 21- and 15-kDa proteins are found associated with cellular tubulovesicular elements related to the ERGIC, suggesting that these proteins are transported in these membranes to the nascent viral factories. When synthesis of the 21-kDa protein is repressed, organized membranes are not formed but numerous ERGIC-derived tubulovesicular structures containing the 15-kDa protein accumulate in the boundaries of the precursors of the viral factories. These data suggest that the 21-kDa protein is involved in organizing the recruited viral membranes, while the 15-kDa protein appears to be one of the viral elements participating in the membrane recruitment process from the ERGIC, to initiate virus formation.  相似文献   

2.
In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.  相似文献   

3.
The large cytoplasmic DNA viruses such as poxviruses, iridoviruses, and African swine fever virus (ASFV) assemble in discrete perinuclear foci called viral factories. Factories exclude host proteins, suggesting that they are novel subcellular structures induced by viruses. Novel perinuclear structures, called aggresomes are also formed by cells in response to misfolded protein (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883--1898; García-Mata, R., Z. Beb?k, E.J. Sorscher, and E.S. Sztul. 1999. J. Cell Biol. 146:1239--1254). In this study, we have investigated whether aggresomes and viral factories are related structures. Aggresomes were compared with viral factories produced by ASFV. Aggresomes and viral factories were located close to the microtubule organizing center and required an intact microtubular network for assembly. Both structures caused rearrangement of intermediate filaments and the collapse of vimentin into characteristic cages, and both recruited mitochondria and cellular chaperones. Given that ASFV factories resemble aggresomes, it is possible that a cellular response originally designed to reduce the toxicity of misfolded proteins is exploited by cytoplasmic DNA viruses to concentrate structural proteins at virus assembly sites.  相似文献   

4.
Husain M  Moss B 《Journal of virology》2003,77(21):11754-11766
Vaccinia virus assembles two distinct lipoprotein membranes. The primary membrane contains nonglycosylated proteins, appears as crescents in the cytoplasm, and delimits immature and mature intracellular virions. The secondary or wrapping membrane contains glycoproteins, is derived from virus-modified trans-Golgi or endosomal cisternae, forms a loose coat around some intracellular mature virions, and becomes the envelope of extracellular virions. Although the mode of formation of the wrapping membrane is partially understood, we know less about the primary membrane. Recent reports posit that the primary membrane originates from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). According to this model, viral primary membrane proteins are cotranslationally inserted into the ER and accumulate in the ERGIC. To test the ERGIC model, we employed Sar1(H79G), a dominant negative form of the Sar1 protein, which is an essential component of coatomer protein II (COPII)-mediated cargo transport from the ER to the ERGIC and other post-ER compartments. Overexpression of Sar1(H79G) by transfection or by a novel recombinant vaccinia virus with an inducible Sar1(H79G) gene resulted in retention of ERGIC 53 in the ER but did not interfere with localization of viral primary membrane proteins in factory regions or with formation of viral crescent membranes and infectious intracellular mature virions. Wrapping of intracellular mature virions and formation of extracellular virions did not occur, however, because some proteins that are essential for the secondary membrane were retained in the ER as a consequence of Sar1(H79G) overexpression. Our data argue against an essential role of COPII-mediated cargo transport and the ERGIC in the formation of the viral primary membrane. Instead, viral membranes may be derived directly from the ER or by a novel mechanism.  相似文献   

5.
The vaccinia virus (VV) A17L gene encodes a 21- to 23-kDa virion component that forms a stable complex with the 14-kDa envelope protein (A27L gene). In a previous report, we described the construction of a VV recombinant, VVindA17L, in which the expression of the A17L gene is inducibly regulated by isopropyl-beta-D-thiogalactoside (IPTG). We demonstrated that shutoff of the A17L gene results in a blockade of virion morphogenesis at a very early stage (D. Rodríguez, M. Esteban, and J. R. Rodríguez, J. Virol. 69:4640-4648, 1995). In the present study, we show that virus growth is restored if the inducer is provided not later than 6 h postinfection. Immunofluorescence and immunoelectron microscopy analysis of VVindA17L-infected cells revealed that in the absence of the 21- to 23-kDa protein, the 14-kDa protein is distributed throughout the cytoplasm. After IPTG addition, the 14-kDa protein can be detected around viral factories and immature virions; at later times, it localizes in the external membranes of intracellular mature virions. Immunoelectron microscopy with anti-21- to 23-kDa antibodies showed that soon after induction, the protein accumulates in membranes of the rough endoplasmic reticulum and in the nuclear envelope. With time, the protein localizes in viral crescents and subsequently associates to the membranes of immature and intracellular mature virions. These results are consistent with a model in which the 21- to 23-kDa protein would be synthesized at the endoplasmic reticulum, from where the protein could be translocated to the membranes of the intermediate compartment to generate the precursors of the viral membranes. Also, these results argue that 14-kDa envelope protein becomes posttranslationally associated to viral membranes through its interaction with the 21-kDa protein.  相似文献   

6.
Replication of the flavivirus Kunjin virus is associated with virus-induced membrane structures within the cytoplasm of infected cells; these membranes appear as packets of vesicles associated with the sites of viral RNA synthesis and as convoluted membranes (CM) and paracrystalline arrays (PC) containing the components of the virus-specified protease (E. G. Westaway, J. M. Mackenzie, M. T. Kenney, M. K. Jones, and A. A. Khromykh, J. Virol. 71:6650-6661, 1997). To determine the cellular origins of these membrane structures, we compared the immunolabelling patterns of several cell markers in relation to these sites by immunofluorescence and immunoelectron microscopy. A marker for the trans-Golgi membranes and the trans-Golgi network, 1,4-galactosyltransferase (GalT), was redistributed to large foci in the cytoplasm of Kunjin virus-infected cells, partially coincident with immunofluorescent foci associated with the putative sites of viral RNA synthesis. As determined by immunoelectron microscopy, the induced vesicle packets contained GalT, whereas the CM and PC contained a specific protein marker for the intermediate compartment (ERGIC53). A further indicator of the role of cellular organelles in their biogenesis was the observation that the Golgi apparatus-disrupting agent brefeldin A prevented further development of immunofluorescent foci of induced membranes if added before the end of the latent period but that once formed, these membrane foci were resistant to brefeldin A dispersion. Reticulum membranes emanating from the induced CM and PC were also labelled with the rough endoplasmic reticulum marker anti-protein disulfide isomerase and were obviously redistributed during infection. This is the first report identifying trans-Golgi membranes and the intermediate compartment as the apparent sources of the flavivirus-induced membranes involved in events of replication.  相似文献   

7.
Hepatitis B virus (HBV) is unusual in that its surface proteins (small [S], medium, and large [L]) are not only incorporated into the virion envelope but they also bud into empty subviral particles in great excess over virions. The morphogenesis of these subviral envelope particles remains unclear, but the S protein is essential and sufficient for budding. We show here that, in contrast to the presumed model, the HBV subviral particle formed by the S protein self-assembles into branched filaments in the lumen of the endoplasmic reticulum (ER). These long filaments are then folded and bridged for packing into crystal-like structures, which are then transported by ER-derived vesicles to the ER-Golgi intermediate compartment (ERGIC). Within the ERGIC, they are unpacked and relaxed, and their size and shape probably limits further progression through the secretory pathway. Such progression requires their conversion into spherical particles, which occurred spontaneously during the purification of these filaments by affinity chromatography. Small branched filaments are also formed by the L protein in the ER lumen, but these filaments are not packed into transport vesicles. They are transported less efficiently to the ERGIC, potentially accounting for the retention of the L protein within cells. These findings shed light on an important step in the HBV infectious cycle, as the intracellular accumulation of HBV subviral filaments may be directly linked to viral pathogenesis.  相似文献   

8.
Several bacteria and viruses remodel cellular membranes to form compartments specialised for replication. Bacteria replicate within inclusions which recruit membrane vesicles from the secretory pathway to provide nutrients for microbial growth and division. Viruses generate densely packed membrane vesicles called viroplasm which provide a platform to recruit host and viral proteins necessary for replication. This review describes examples where both intracellular bacteria (Salmonella, Chlamydia and Legionella) and viruses (picornaviruses and hepatitis C) recruit membrane vesicles to sites of replication by modulating proteins that control the secretory pathway. In many cases this involves modulation of Rab and Arf GTPases.  相似文献   

9.
Vaccinia virus (VV) A17L gene encodes a 23-kDa protein that is proteolytically cleaved to generate a 21-kDa product that is incorporated into the viral particles. We have previously shown that the 21-kDa protein forms a stable complex with the VV 14-kDa envelope protein and suggested that the 21-kDa protein may serve to anchor the 14-kDa protein to the envelope of the virion (D. Rodríguez, J. R. Rodríguez, and M. Esteban, J. Virol. 67:3435-3440, 1993). To study the role of the 21-kDa protein in virion assembly, in this investigation we generated a VV recombinant, VVindA17L, that contains an inducible A17L gene regulated by the E. coli repressor/operator system. In the absence of the inducer, shutoff of the A17L gene was complete, and this shutoff correlated with a reduction in virus yields of about 3 log units. Although early and late viral polypeptides are normally synthesized in the absence of the A17L gene product, proteolytic processing of the major p4a and p4b core proteins was clearly impaired under these conditions. Electron microscopy examination of cells infected in the absence of isopropylthiogalactopyranoside (IPTG) revealed that virion morphogenesis was completely arrested at a very early stage, even prior to the formation of crescent-shaped membranes, which are the first distinguishable viral structures. Only electron-dense structures similar to rifampin bodies, but devoid of membranes, could be observed in the cytoplasm of cells infected with VVindA17L under nonpermissive conditions. Considering the most recent assembly model presented by Sodeik et al. (B. Sodeik, R. W. Doms, M. Ericsson, G. Hiller, C. E. Machamer, W. van't Hof, G. van Meer, B. Moss, and G. Griffiths, J. Cell Biol. 121:521-541, 1993), we propose that this protein is targeted to the intermediate compartment and is involved in the recruitment of these membranes to the viral factories, where it forms the characteristic crescent structures that subsequently result in the formation of virions.  相似文献   

10.
11.
In avian smooth muscle cells, desmin-containing intermediate filaments (IFs) are a prominent component of the cytoskeleton and are readily seen in several domains, including the axial intermediate filament bundle (IFB). Both the nucleus and some of the mitochondria are partly surrounded by elements of the IFB. By using anti-desmin and protein-A-colloidal gold labeling, we have identified intermediate filaments that form linkages with the nuclear envelope and with mitochondria. These linkage regions seem to occupy a proportionately greater part of the mitochondrial surface than of the nuclear envelope. The existence of these linkages in smooth muscle cells is consistent with results that support similar linkages to mitochondria and other cellular structures in various cells that contain either vimentin or keratin IFs. These linkages could functionally restrain or assist in homeostatically restoring organelles to their normal position after the rearrangement that accompanies the substantial shortening of smooth muscle cells.  相似文献   

12.
The interaction between the Toxoplasma parasitophorous vacuole and vimentin-type intermediate filaments in Vero cells was investigated via immunofluorescence microscopy. A significant rearrangement of host cell vimentin around the Toxoplasma parasitophorous vacuoles occurs throughout the course of infection. Host cell vimentin associates with the parasitophorous vacuoles within an hour after invasion. This vimentin overcoating of the vacuole is initiated at the host cell nuclear surface. During parasite multiplication, vimentin retains a closely defined association with the cytosolic surface of the parasitophorous vacuole. In addition, the vimentin intermediate filaments originating from the host cell nuclear surface are progressively rearranged around the enlarging parasitophorous compartment. During infections, the order of vimentin cytoskeleton is normal throughout the cell and appears redefined only at the vicinity of the parasitophorous vacuole. Depolymerization of the intermediate filaments was achieved with the phosphatase inhibitors okadaic acid and calyculin A. Disruption of the intermediate filament networks resulted in displacement of the parasitophorous vacuoles from the host cell nuclear surface. The data indicate that host cell vimentin binds to the Toxoplasma parasitophorous vacuoles and that the host intermediate filament network serves to dock the parasite compartment to the host cell nuclear surface.  相似文献   

13.
Meng X  Embry A  Rose L  Yan B  Xu C  Xiang Y 《Journal of virology》2012,86(10):5603-5613
Poxvirus acquires its primary envelope through a process that is distinct from those of other enveloped viruses. The molecular mechanism of this process is poorly understood, but several poxvirus proteins essential for the process have been identified in studies of vaccinia virus (VACV), the prototypical poxvirus. Previously, we identified VACV A6 as an essential factor for virion morphogenesis by studying a temperature-sensitive mutant with a lesion in A6. Here, we further studied A6 by constructing and characterizing an inducible virus (iA6) that could more stringently repress A6 expression. When A6 expression was induced by the inducer isopropyl-β-D-thiogalactoside (IPTG), iA6 replicated normally, and membrane proteins of mature virions (MVs) predominantly localized in viral factories where virions were assembled. However, when A6 expression was repressed, electron microscopy of infected cells showed the accumulation of large viroplasm inclusions containing virion core proteins but no viral membranes. Immunofluorescence and cell fractionation studies showed that the major MV membrane proteins A13, A14, D8, and H3 did not localize to viral factories but instead accumulated in the secretory compartments, including the endoplasmic reticulum. Overall, our results show that A6 is an additional VACV protein that participates in an early step of virion membrane biogenesis. Furthermore, A6 is required for MV membrane protein localization to sites of virion assembly, suggesting that MV membrane proteins or precursors of MV membranes are trafficked to sites of virion assembly through an active, virus-mediated process that requires A6.  相似文献   

14.
Genome replication and assembly of viruses often takes place in specific intracellular compartments where viral components concentrate, thereby increasing the efficiency of the processes. For a number of viruses the formation of 'factories' has been described, which consist of perinuclear or cytoplasmic foci that mostly exclude host proteins and organelles but recruit specific cell organelles, building a unique structure. The formation of the viral factory involves a number of complex interactions and signalling events between viral and cell factors. Mitochondria, cytoplasmic membranes and cytoskeletal components frequently participate in the formation of viral factories, supplying basic and common needs for key steps in the viral replication cycle.  相似文献   

15.
Little is known about the formation and regulation of endoplasmic reticulum (ER)–Golgi transport intermediates, although previous studies suggest that cargo is the main regulator of their morphology. In this study, we analyze the role of coat protein I (COPI) and cytoskeleton in the formation of tubular ER–Golgi intermediate compartment (ERGIC) and also show that partial COPI detachment by means of low temperature (15°C) or brefeldin A induces the formation of transient tubular ERGIC elements. Most of them moved from the cell periphery to the perinuclear area and were 2.5× slower than vesicles. Time‐lapse analysis of living cells demonstrates that the ERGIC elements are able to shift very fast from tubular to vesicular forms and vice versa, suggesting that the amount of cargo is not the determining factor for ERGIC morphology. Both the partial microtubule depolymerization and the inhibition of uncoating of the membranes result in the formation of long tubules that grow from round ERGICs and form at complex network. Interestingly, both COPI detachment and microtubule depolymerization induce a redistribution of kinesin from peripheral ERGIC elements to the Golgi area, while dynein distribution is not affected. However, both kinesin and dynein downregulation by RNA interference induced ERGIC tubulation. The tubules induced by kinesin depletion were static, whereas those resulting from dynein depletion were highly mobile. Our results strongly suggest that the interaction of motor proteins with COPI‐coated membranes and microtubules is a key regulator of ERGIC morphology and mobility.  相似文献   

16.
Cytoplasmic filaments in fetal and neonatal pig testis   总被引:1,自引:0,他引:1  
Leydig cells in developing fetal pig testis contained during the fetal regressive phase large accumulations of intermediate filaments. Before and after this period these filaments were arranged in a criss-cross fashion. In the pig as well as in the dog testis these filaments have been characterized as vimentin. Within the vimentin aggregates occasionally a weak positive actin reaction was seen in pig but not in dog Leydig cells. Microfilaments were hardly observed. Most Sertoli cells contained a layer of actin microfilaments close to the basal cell membrane. In the lower cell compartment and around the nucleus (intermediate) vimentin filaments could be observed in a criss-cross configuration.  相似文献   

17.
Decidualization of the mouse endometrium consists of a redifferentiation of the endometrial stromal fibroblasts. During decidualization these fibroblasts undergo growth, change of shape, multinucleation, and establishment of intercellular junctions. One feature of rodent decidual cells is the accumulation of intermediate filaments. In spite of the fact that fibroblasts normally have vimentin intermediate filaments, they acquire a large amount of desmin intermediate filaments while they undergo decidualization. The light and electron microscope immunocytochemical results of the present work show that during the initial stages of decidual transformation the desmin intermediate filaments accumulate around the nuclei, often forming caps around the nuclear envelope. As the decidual cells grow, the filaments form bundles and nets that radiate from the nuclei toward the cell surface. During the final stages of differentiation, on day 8 of pregnancy, staining of differentiated decidual cells decreases and most filaments accumulate under the cell surface. A role for intermediate filaments is suggested for decidualization of mouse endometrial cells.  相似文献   

18.
We have assessed the involvement of the nuclear lamins in nuclear envelope reassembly. Analysis of perforated mitotic cells shows that A-type lamins are partly cytosolic and partly chromosome-bound, whereas B-type lamins are associated with vesicular structures throughout cell division. Lamin B-containing vesicles appear to dock on vimentin intermediate filaments during prometaphase, but dissociate from the cytoskeleton and assemble around chromatin at later phases of mitosis. Mitotic vesicles isolated from prometaphase cells en bloc with vimentin filaments can specifically capture chromosomes. Efficient chromosome capturing requires cytosolic factors and a dephosphorylating environment. Urea-stripping of the vesicles abolishes binding to chromosomes. However, reconstitution of the stripped membranes with purified B-type lamins restores their ability to bind to chromosomes in a cytosol- and dephosphorylation-dependent fashion. Vesicles reconstituted with B-type lamins form membraneous 'crescents' on the surfaces of chromosomes, but, unlike native vesicles, do not fuse into large sheets. From these observations we conclude that the initial targeting of mitotic vesicles to chromosomes is dependent on B-type lamins and on factors present in the mitotic cytoplasm. Apparently, further recruitment of membranes and fusion of chromosome-bound vesicles onto chromatin involves non-lamin peripheral membrane proteins.  相似文献   

19.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

20.
Murine cytomegalovirus (MCMV) interferes with the MHC class I pathway of antigen presentation. The type I transmembrane glycoprotein gp40, encoded by the gene m152, retains major histocompatibility complex (MHC) class I complexes in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC)/cis-Golgi. These MHC class I complexes are stable, show an extended half-life and do not exchange beta(2)-microglobulin, whereas gp40 reaches an endosomal/lysosomal compartment where it subsequently is degraded. The analysis of regions within the viral protein that are essential for MHC class I retention revealed that a secreted form of gp40, lacking the cytoplasmic tail and the transmembrane region, still has the capacity to retain MHC class I complexes. Continuous expression of gp40 is not required for MHC class I retention. Our data indicate that the retention of MHC class I complexes in the ERGIC/cis-Golgi is triggered by gp40 and does not require the further presence of the viral protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号