共查询到20条相似文献,搜索用时 15 毫秒
1.
Bellamy SR Milsom SE Scott DJ Daniels LE Wilson GG Halford SE 《Journal of molecular biology》2005,348(3):641-653
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other. 相似文献
2.
3.
Sung Jae Cho Joon-Hwa Lee Byong-Seok Choi 《Archives of biochemistry and biophysics》2010,501(2):201-206
In Escherichia coli, the very short patch (VSP) repair system is a major pathway for removal of T·G mismatches in Dcm target sequences. In the VSP repair pathway, the very short patch repair (Vsr) endonuclease selectively recognizes a T·G mismatch in Dcm target sequences and hydrolyzes the 5′-phosphate group of the mismatched thymine. The hydrogen exchange NMR studies here revealed that the T5·G18 mismatch in the Dcm target sequence significantly stabilizes own base pair but destabilizes the two neighboring G4·C19 and A6·T17 base pairs compare to other T·G mismatches. These unusual patterns of base pair stability in the Dcm target sequence can explain how the Vsr endonuclease specifically recognizes the mismatched Dcm target sequence and intercalates into the DNA. 相似文献
4.
The Escherichia coli vsr endonuclease recognises T:G base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The gene encoding the vsr endonuclease is next to the gene specifying the E. coli dcm DNA-methyltransferase; an enzyme that adds CH3 groups to the first dC within its target sequence CC[A/T]GG, giving C5MeC[A/T]GG. Deamination of the d5MeC results in CT[A/T]GG in which the first T is mis-paired with dG and it is believed that the endonuclease preferentially recognises T:G mismatches within the dcm recognition site. Here, the preference of the vsr endonuclease for bases surrounding the T:G mismatch has been evaluated. Determination of specificity constant (kst/KD; kst = rate constant for single turnover, KD = equilibrium dissociation constant) confirms vsr's preference for a T:G mismatch within a dcm sequence i.e. CT[A/T]GG (the underlined T being mis-paired with dG) is the best substrate. However, the enzyme is capable of binding and hydrolysing sequences that differ from the dcm target site by a single base-pair (dcm star sites). Individual alteration of any of the four bases surrounding the mismatched T gives a substrate, albeit with reduced binding affinity and slowed turnover rates. The vsr endonuclease has a much lower selectivity for the dcm sequence than type II restriction endonucleases have for their target sites. The results are discussed in the light of the known crystal structure of the vsr protein and its possible physiological role. 相似文献
5.
Skoko D Yoo D Bai H Schnurr B Yan J McLeod SM Marko JF Johnson RC 《Journal of molecular biology》2006,364(4):777-798
Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis-DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 microM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome. 相似文献
6.
Properties of the main endonuclease specific for apurinic sites of Escherichia coli (endonuclease VI). Mechanism of apurinic site excision from DNA. 总被引:10,自引:0,他引:10
The main endonuclease for apurinic sites of Escherichia coli (endonuclease VI) has no action on normal strands, either in double-stranded or single-stranded DNA, or on alkylated sites. The enzyme has an optimum pH at 8.5, is inhibited by EDTA and needs Mg2+ for its activity; it has a half-life of 7 min at 40 degrees C. A purified preparation of endonuclease VI, free of endonuclease II activity, contained exonuclease III; the two activities (endonuclease VI and exonuclease III) copurified and were inactivated with the same half-lives at 40 degrees C. Endonuclease VI cuts the DNA strands on the 5' side of the apurinic sites giving a 3'-OH and a 5'-phosphate, and exonuclease III, working afterwards, leaves the apurinic site in the DNA molecule; this apurinic site can subsequently be removed by DNA polymerase I. The details of the excision of apurinic sites in vitro from DNA by endonuclease VI/exonuclease III, DNA polymerase I and ligase, are described; it is suggested that exonuclease III works as an antiligase to facilitate the DNA repair. 相似文献
7.
8.
Genetic information is frequently disturbed by introduction of modified or mismatch bases into duplex DNA, and hence all organisms contain DNA repair systems to restore normal genetic information by removing such damaged bases or nucleotides and replacing them by correct ones. The understanding of this repair mechanism is a central subject in cell biology. This review focuses on the three-dimensional structural views of damaged DNA recognition by three proteins. The first protein is T4 endonuclease V (T4 endo V), which catalyzes the first reaction step of the excision repair pathway to remove pyrimidine-dimers (PD) produced within duplex DNA by UV irradiation. The crystal structure of this enzyme complexed with DNA containing a thymidine-dimer provided the first direct view of DNA lesion recognition by a repair enzyme, indicating that the DNA kink coupled with base flipping-out is important for damaged DNA recognition. The second is very short patch repair (Vsr) endonuclease, which recognizes a TG mismatch within the five base pair consensus sequence. The crystal structure of this enzyme in complex with duplex DNA containing a TG mismatch revealed a novel mismatch base pair recognition scheme, where three aromatic residues intercalate from the major groove into the DNA to strikingly deform the base pair stacking but the base flipping-out does not occur. The third is human nucleotide excision repair (NER) factor XPA, which is a major component of a large protein complex. This protein has been shown to bind preferentially to UV- or chemical carcinogen-damaged DNA. The solution structure of the XPA central domain, essential for the interaction of damaged DNA, was determined by NMR. This domain was found to be divided mainly into a (Cys)4-type zinc-finger motif subdomain for replication protein A (RPA) recognition and the carboxyl terminal subdomain responsible for DNA binding. 相似文献
9.
Jun Sumaoka Kenichiro Furuki Yuki Kojima Masahiko Shibata Kimihiko Hirao Naoya Takeda 《Nucleosides, nucleotides & nucleic acids》2013,32(4-6):523-538
The hydrolysis of cyclic adenosine 3′,5′-monophosphate and 2′-deoxythymidylyl(3′-5′)2′-deoxythymidine by Ce(NH4)2(NO3)6 was kinetically studied. The rate of hydrolysis was fairly proportional to the concentration of [Ce IV 2 (OH)4]4+, showing that this is the catalytically active species. According to quantum-chemical calculation, the two Ce(IV) ions in this [CeIV 2(OH)4]4+ cluster are bridged by two OH residues. Upon the complex formation with H2 PO4 ? (a model compound for the phosphodiesters), these two Ce(IV) ions bind the two oxygen atoms of the substrate and enhance the electrophilicity of the phosphorus atom. The catalytic mechanism of Ce(IV)-induced hydrolysis of phosphodiesters has been proposed on the basis these results. 相似文献
10.
11.
12.
13.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA. 相似文献
14.
15.
16.
K R Rupprecht G Gordon M Lundrigan R C Gayda A Markovitz C Earhart 《Journal of bacteriology》1983,153(2):1104-1106
Chromosomal DNA from strain UT400, a previously described deletion mutant of Escherichia coli K-12 that lacks outer membrane protein a, failed to hybridize with plasmid DNA (pGGC110) containing the structural gene for protein a. We designate the genetic locus for protein a, located at approximately 12.5 min of the E. coli chromosome, ompT. 相似文献
17.
Molecular analysis of plasmid DNA repair within ultraviolet-irradiated Escherichia coli. I. T4 endonuclease V-initiated excision repair 总被引:4,自引:0,他引:4
The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme "scans" DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule. 相似文献
18.
Newman M Murray-Rust J Lally J Rudolf J Fadden A Knowles PP White MF McDonald NQ 《The EMBO journal》2005,24(5):895-905
The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)(2) domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3' flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes. 相似文献
19.
20.
Tryptic fragments of the Escherichia coli DNA gyrase A protein 总被引:22,自引:0,他引:22
Treatment of the Escherichia coli DNA gyrase A protein with trypsin generates two large fragments which are stable to further digestion. The molecular masses of these fragments are 64 and 33 kDa, and they are shown to be derived from the N terminus and the C terminus of the A protein, respectively. These fragments could represent structural and/or functional domains within the A subunit of DNA gyrase. The trypsin-cleaved A protein (A'), in combination with the B subunit of gyrase, can support ATP-dependent supercoiling of relaxed DNA and other reactions of DNA gyrase. The isolated 64-kDa fragment will also catalyse DNA supercoiling in the presence of the B protein, but the 33-kDa fragment shows no enzymic activities. We conclude that the N-terminal 64-kDa fragment represents the DNA breakage/reunion domain of the A protein, while the 33-kDa fragment may contribute to the stability of the gyrase-DNA complex. 相似文献