首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The frequency of reversion of phi X174 amber mutants to wild-type, resulting from in vitro DNA synthesis catalyzed by eucaryotic DNA polymerase-alpha or -beta, varies over a 10- to 1000-fold range. This variation is dependent on the relative ratio of deoxyribonucleotide substrates present during in vitro DNA synthesis. The effect is observed at two different loci in the genome and with several different DNA polymerases. In addition, the effect is observed using an unfractionated cellular extract. These results provide support for the hypothesis that altered nucleotide pools cause mutations in mammalian cells by decreasing the fidelity of DNA synthesis.  相似文献   

2.
DNA polymerase-alpha and -beta can be distinguished from one another by the differential effects of N-ethylmaleimide, KCl, ara-CTP and temperature, as well as on the basis of sedimentation. The sensitivity of DNA polymerase-beta to elevated temperatures as compared to DNA polymerase-alpha provides a new means of distinguishing between these two enzymes even in crude extracts and a possible probe for determining their function. DNA polymerase-alpha and -beta share several properties in common, including the ability to readily incorporate dUTP in place of dTTP. The Km for dUTP varies from 10 to 30 micron with different preparations of DNA polymerase-alpha and -beta. Thus, in mammalian cells, dUMP could be incorporated into DNA, and if excised by an endonuclease, would lead to discontinuities. Initial analyses of fidelity in direct comparative studies indicate that beta-class DNA polymerases are highly accurate in base selection when copying poly[d(A-T)]. Less than one molecule of dGMP is incorporated for every 12 000-45 000 molecules of dAMP and dTMP polymerized. DNA polymerase-alpha is somewhat less accurate, making one mistake for every 4000-10 000 correct nucleotides incorporated. Since both polymerases lack an exonucleolytic activity, this accuracy must be the result of selectivity for the complementary nucleotide by the polymerase.  相似文献   

3.
4.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A study of the inhibition of mouse cellular DNA polymerases by poly-nucleotides and their vinyl analogs is presented. Poly(dT)-directed poly(dA) synthesis by representatives of all three classes of cellular DNA polymerase could be completely inhibited by poly(9-vinyladenine), although higher concentrations were required in the case of the gamma class enzyme. Studies on the mechanism of the inhibition using the alpha class DNA polymerase and different templates showed that the enzyme activity was inhibited in all cases where base-pairing between the vinyl polymer and the template occurred; poly(9-vinyladenine) did not interfere with the replication of templates to which it does not bind. The inhibition occurred shortly after addition of poly(9-vinyladenine) to ongoing reactions, yet the enzyme was not displaced from the template - primer complex.  相似文献   

6.
7.
Mechanisms for the fidelity of DNA replication in eucaryotes are not adequately understood. Certain hypotheses can be tested by examining whether the first nucleotide inserted is incorporated with a significantly higher error rate than subsequent nucleotides. Using synthetic oligodeoxynucleotides, we have measured the effect of primer position on single-base misinsertion frequencies at an amber site in phi X174 DNA. Our results show a lack of position effect, indicating that processivity and the most direct "energy relay" proofreading mechanisms are not important determinants in eucaryotic replication fidelity.  相似文献   

8.
9.
10.
Based on available structural studies, a model is presented for polymerization dynamics of mammalian family X DNA polymerases, including polymerases β, λ, μ, and terminal deoxynucleotidyl transferase (TdT). Using the model, distinct polymerization activities and processivities of the four polymerases acting on different forms of DNA substrate are analyzed and studied theoretically. A “gradient” of template dependence of polymerases β, λ, μ, and TdT is well explained. The much higher occurrence frequencies of the −1 frameshift DNA synthesis by pols λ and μ than that by pol β are well explained. The theoretical results on the polymerization processivities are also in agreement with the available experimental data.  相似文献   

11.
In the presence of optimal concentrations of Mg2+, rates of activated (gapped) DNA-directed DNA synthesis by purified mammalian type C retroviral DNA polymerases are stimulated greater than 10-fold by the polyamines spermine and spermidine. Such stimulation was not observed using either similar concentrations of the polyamines cadaverine or putrescine or exogenously provided salt or ammonium ions. Avian type C as well as mammalian type B and type D retroviral DNA polymerases, in contrast to the mammalian type C enzyme, were found to be relatively insensitive to spermine and spermidine stimulation. Kinetic analysis of the polyamine stimulation of activated DNA-directed DNA synthesis carried out using spermine and purified Rauscher leukemia virus DNA polymerase revealed at least two distinct mechanisms of activation of DNA synthesis. 1) At DNA concentrations below 2.5 micrograms/ml, spermine appears to interact with the enzyme-DNA complex in order to stimulate synthesis. 2) At DNA concentrations above 2.5 micrograms/ml, increased spermine stimulation is observed which appears to be due to its direct interaction with the activated DNA template resulting in either selective limitation of the formation of "dead-end" enzyme-DNA complexes or its ability to convert such nonproductive enzyme binding sites into productive sites for the initiation of synthetic activity. The addition of spermine to reaction mixtures was found to increase both the apparent Km and Vmax of the activated (gapped) DNA-directed reaction with regard to template concentration.  相似文献   

12.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

13.
DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We reported previously that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)) inhibited the activities of eukaryotic pols in vitro. In the present study, we found that PUFA also inhibited human topos I and II activities, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA inhibited the activities of mammalian pols and human topos, but did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC(50) values for mammalian pols and human topos of 11.0-31.8 and 0.5-2.5 microM, respectively. Therefore, the inhibitory effect of cEPA on topos was stronger than that on pols. Preincubation analysis suggested that cEPA directly bound both topos I and II, but did not bind or interact with substrate DNA. This is the first report that conjugated PUFA such as cEPA act as inhibitors of pols and topos. The results support the therapeutic potential of cEPA as a leading anti-cancer compound that poisons pols and topos.  相似文献   

14.
15.
16.
The affinities of oligothymidylates and of some analogs for the template site, of a set of oligodeoxyribo- and oligoribonucleotides for the primer site, and of dNTPs and some analogs for the substrate sites of DNA polymerase I Klenow fragment and of human placenta DNA polymerase alpha were measured using them either as competitors of affinity modification or as substrates. The data obtained enable us to hypothesize that the Me2+-dependent electrostatic contact and hydrogen bond of a single internucleotide phosphate and the hydrophobic interactions of the other nucleotide units determine the formation of oligonucleotide-template site complexes. Interaction of the primer's 3'-terminal hydroxy group and of the negatively charged adjacent phosphate with the enzyme, and Watson-Crick base pairing with the template are of crucial importance for the formation of the ternary enzyme-template-primer complex. dNTP and dNMP imidazolides inactivate enzymes via an affinity modification mechanism only in the presence of the template-primer complex. dNTP affinities exceed those of dNDPs and dNMPs, the enhancement being most significant for the substrate that is complementary to the template, thus suggesting the participation of the gamma-phosphate of dNTP in the substrate selection step.  相似文献   

17.
Biotinylated lithocholic acids have been synthesized. The compounds inhibited mammalian DNA polymerases alpha and beta with dose-dependent manner. The streptavidine columns conjugated with the synthetic biotinylated compounds chromatographed both two enzymes eluted by KCl solution at the different concentrations.  相似文献   

18.
19.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

20.
Carp muscle trypsin inhibitor showed an inhibitory effect on bovine trypsin, bovine alpha-chymotrypsin and porcine elastase in a non-competitive, competitive and competitive manner, respectively. The inhibitor formed a stable complex with the above proteinases which was not dissociated in the presence of 2-mercaptoethanol and SDS. The true target proteinase for carp muscle trypsin inhibitor, as yet unknown, seems to be an alpha-chymotrypsin- or elastase-like enzyme rather than trypsin, judging from the manner of inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号