首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a region near the center of the dihydrofolate reductase gene dhfr in Chinese hamster ovary cells that is attached to nuclear scaffolds isolated by extraction with lithium diiodosalicylate. Detailed analysis presented here reveals the presence of only two closely linked sites in 35,000 base-pairs scanned that mediate attachment of the dhfr gene to the nuclear scaffold. Sequence analysis of one of the sites reveals a high A + T content, the presence of cleavage consensus sequences for topoisomerase II, and direct and inverted repeated sequence motifs that are localized to a small region of the attachment site. Attachment of these two regions to the nuclear scaffold is observed in wild-type, hemizygous, and amplified cell lines. Attachment is also retained in dhfr mutants isolated in our laboratory, in which chromosomal lesions have occurred directly adjacent to the scaffold-associated regions. These two regions are not bound to scaffolds prepared from isolated metaphase chromosomes, suggesting that attachment of the dhfr gene is lost during mitosis.  相似文献   

2.
3.
Previous experiments have identified a 657-bp restriction fragment in the non-transcribed region of the Drosophila histone gene cluster that is specifically associated with the histone-depleted nuclear scaffold. The remaining fragments of the 5-kb histone repeat were shown to be readily released from the scaffold; hence it was proposed that the tandemly repeated cluster of histone genes forms a series of 5-kb loops restrained by a nuclear substructure at the sites of attachment. Here we show that the attachment fragment is tightly associated with protease-sensitive material, whereas the solubilized fragments are relatively protein-free. Exonuclease III digestion has been used to map the location of protein complexes on the attachment fragment. We have defined two regions of ~200 bp whose borders provide kinetic barriers to exonuclease III degradation. They are separated by a nucleaseaccessible region of ~100 bp. The protected regions are sufficient to mediate association of the fragment with the histonedepleted nuclei. Sequence analysis reveals an enrichment for sequences closely related to the topoisomerase II cleavage consensus in these two domains.  相似文献   

4.
Caenorhabditis elegans contains a family of vitellogenin genes consisting of five closely related genes (vit-1 to vit-5) coding for 186,000 Mr yolk proteins, and one distantly related gene (vit-6) encoding a 200,000 Mr precursor to two smaller yolk proteins. We demonstrate here that, although vit-1 to vit-5 are not clustered (with the exception of vit-3 and vit-4), they are all on the X chromosome. In contrast, vit-6 is autosomal. The genes are strictly regulated during development: they are activated in the intestine of the hermaphrodite worm, following the last larval molt. In order to determine whether the vit genes are contained within chromosomal domains of similarly regulated genes, we have used the chromosomal "walking" technique to isolate 55,000 to 60,000 base-pairs of DNA surrounding each of the X-linked genes and determined the developmental specificity of nearby genes. In the total of 235,400 base-pairs of cloned DNA, seven genes, in addition to the five vit genes, were found. The average gene spacing is approximately 20,000 base-pairs per gene but is highly variable, ranging from less than 2000 to more than 38,000 base-pairs. The seven newly identified genes, called uvt-1 to uvt-7, specify RNAs varying in size from 500 to 2700 bases. With the exception of uvt-4, all of the genes are developmentally regulated; but the patterns of regulation are quite variable, and all are different from the vitellogenin genes. The vit genes, therefore, are not contained within co-regulated chromosomal domains. We also searched for the presence of repetitive DNA, but only four such sequences were found.  相似文献   

5.
The -10 and -35 regions of E. coli promoter sequences are separated by a spacer region which has a consensus length of 17 base-pairs. This region is thought to contribute to promoter function by correctly positioning the two conserved regions. We have performed a statistical evaluation of 224 spacer sequences and found that spacers which deviate from the 17 base-pair consensus length have nonrandom sequences in their upstream ends. Spacer regions which are shorter than 17 base-pairs in length have a significantly higher than expected frequency of purine-purine and pyrimidine-pyrimidine homo-dinucleotides at the six upstream positions. Spacer regions which are longer than 17 base-pairs in length have a significantly higher than expected frequency of purine-pyrimidine and pyrimidine-purine hetero-dinucleotides at these positions. This suggests that the nature of the purine-pyrimidine sequence at the upstream end of spacer regions affect promoter function in a manner which is related to the spacer length. We examine the spacer sequences as a function of spacer length and discuss some possible explanations for the observed relationship between sequence and length.  相似文献   

6.
7.
8.
We have isolated and characterized two kinds of cDNA for the chicken cardiac myosin alkali light chain. The sequences of the two cDNAs are identical, except for a notable divergence in part of the 3' untranslated sequence. By analysis of isolated genomic clones, it was shown that the genomic sequences corresponding to the different sequences in the 3' untranslated regions of the two mRNAs were arranged within a limited part of a single stretch of DNA; also the two distinct 3' untranslated regions of the two mRNAs shared part of the last exon, which was 0.6 x 10(3) base-pairs long. There are two canonical acceptor sites available for RNA splicing in the last exon, the first being located at the 5' end of the exon, and the second at 370 base-pairs downstream from this end. Together with analysis by S1 nuclease mapping, the foregoing results lead us to conclude that, by the differential use of these two acceptor sites, a single gene generates two distinct mRNAs of 1.45 x 10(3) base-pairs and 1.1 x 10(3) base-pairs with or without the 5' half of the last exon. The two mRNAs appear to utilize the same modified poly(A) signal, AGTAAA, rather than the authentic AATAAA sequence present about 30 base-pairs downstream from the poly(A) attachment sites. This is probably because another consensus G + T-rich sequence is present at an appropriate distance from the AGTAAA sequence, but not from the AATAAA sequence. The gene for the cardiac myosin alkali light chain has proved to be expressed in ventricular muscle and in atrial and anterior latissimus dorsi muscles, the last of these being characteristic of slow skeletal muscle. In these muscles, two kinds of mRNA for the cardiac myosin alkali light chain, identical with those in ventricular muscle, were expressed and their relative amount in each tissue was almost the same as that in ventricular muscle.  相似文献   

9.
The discoidin I genes of Dictyostelium form a small, co-ordinately regulated multigene family. We have sequenced and compared the upstream regions of the DiscI-alpha, -beta and -gamma genes. For the most part the upstream regions of the three genes are non-homologous. The upstream sequences of the beta and gamma genes are exceedingly A + T-rich, while those of the alpha gene are less so. All three genes have a relatively G + C-rich region 20 to 40 base-pairs in length, found approximately 200 base-pairs 5' to the messenger RNA start site. This G + C-rich region 5' to the beta and gamma genes is flanked by short inverted repeats. Within this region, there is an 11 base-pair exact homology between the alpha and gamma genes, and a less perfect homology between these genes and the beta gene. The homology is flanked at a short distance by interspersed G and T residues. The gamma gene is greater than 90% A + T for greater than 800 base-pairs upstream. Further upstream there is a G + C-rich region that is also found inverted approximately 3.5 X 10(3) base-pairs away. The gamma and beta genes are tandemly linked, and the entire approximately 500 base-pair intergene region between the 3' end of the gamma gene and the 5' end of the beta gene is A + T-rich (approximately 90%) with the exception of the homology region 5' to the gamma gene. We demonstrate also the presence of a discoidin I pseudogene fragment having only 139 base-pairs of discoidin homology with greater than 8% mismatch. It is flanked upstream by five 39 base-pair G + C-rich repeats, and downstream by sequences that are extremely A + T-rich. We discuss the possible significance of the conserved G + C-rich structures on discoidin I gene expression.  相似文献   

10.
Goetze S  Gluch A  Benham C  Bode J 《Biochemistry》2003,42(1):154-166
Recent evidence adds support to a traditional concept according to which the eukaryotic nucleus is organized into functional domains by scaffold or matrix attachment regions (S/MARs). These regions have previously been predicted to have a high potential for stress-induced duplex destabilization (SIDD). Here we report the parallel results of binding (reassociation) and computational SIDD analyses for regions within the human interferon gene cluster on the short arm of chromosome 9 (9p22). To verify and further refine the biomathematical methods, we focus on a 10 kb region in the cluster with the pseudogene IFNWP18 and the interferon alpha genes IFNA10 and IFNA7. In a series of S/MAR binding assays, we investigate the promoter and termination regions and additional attachment sequences that were detected in the SIDD profile. The promoters of the IFNA10 and the IFNA7 genes have a moderate approximately 20% binding affinity to the nuclear matrix; the termination sequences show stronger association (70-80%) under our standardized conditions. No comparable destabilized elements were detected flanking the IFNWP18 pseudogene, suggesting that selective pressure acts on the physicochemical properties detected here. In extended, noncoding regions a striking periodicity is found of rather restricted SIDD minima with scaffold binding potential. By various criteria, the underlying sequences represent a new class of S/MARs, thought to be involved in a higher level organization of the genome. Together, these data emphasize the relevance of SIDD calculations as a valid approach for the localization of structural, regulatory, and coding regions in the eukaryotic genome.  相似文献   

11.
Meganucleases are sequence-specific endonucleases which recognize large (>12 bp) target sites in living cells and can stimulate homologous gene targeting by a 1000-fold factor at the cleaved locus. We have recently described a combinatorial approach to redesign the I-CreI meganuclease DNA-binding interface, in order to target chosen sequences. However, engineering was limited to the protein regions shown to directly interact with DNA in a base-specific manner. Here, we take advantage of I-CreI natural degeneracy, and of additional refinement steps to extend the number of sequences that can be efficiently cleaved. We searched the sequence of the human XPC gene, involved in the disease Xeroderma Pigmentosum (XP), for potential targets, and chose three sequences that differed from the I-CreI cleavage site over their entire length, including the central four base-pairs, whose role in the DNA/protein recognition and cleavage steps remains very elusive. Two out of these targets could be cleaved by engineered I-CreI derivatives, and we could improve the activity of weak novel meganucleases, to eventually match the activity of the parental I-CreI scaffold. The novel proteins maintain a narrow cleavage pattern for cognate targets, showing that the extensive redesign of the I-CreI protein was not made at the expense of its specificity. Finally, we used a chromosomal reporter system in CHO-K1 cells to compare the gene targeting frequencies induced by natural and engineered meganucleases. Tailored I-CreI derivatives cleaving sequences from the XPC gene were found to induce high levels of gene targeting, similar to the I-CreI scaffold or the I-SceI "gold standard". This is the first time an engineered homing endonuclease has been used to modify a chromosomal locus.  相似文献   

12.
13.
14.
We have purified the type I restriction enzymes SB and SP from Salmonella typhimurium and S. potsdam, respectively, and determined the DNA sequences that they recognize. These sequences resemble those previously determined for the type I enzymes, EcoB, EcoK and EcoA, in that the specific part of the sequence is divided into two domains by a spacer of non-specific sequence that has a fixed length for each enzyme. Two main differences from the previously determined sequences are seen. Both of the new sequences are degenerate and one of them, SB, has one trinucleotide and one pentanucleotide-specific domain rather than the trinucleotide and tetranucleotide domains seen for all of the other enzymes. The only conserved features of the recognition sequences are the adenosyl residues that are methylated in the modification reaction. For all of the enzymes these are situated ten or 11 base-pairs apart, one on each strand of the DNA. This suggests that the enzymes bind to DNA along one face of the double helix making protein-DNA interaction in two successive major grooves with most of the non-specific spacer sequence in the intervening minor groove.  相似文献   

15.
Histone-depleted nuclei maintain sequence-specific interactions with genomic DNA at sites known as scaffold attachment regions (SARs) or matrix attachment regions. We have previously shown that in Saccharomyces cerevisiae, autonomously replicating sequence elements bind the nuclear scaffold. Here, we extend these observations to the fission yeast Schizosaccharomyces pombe. In addition, we show that four SARs previously mapped in the genomic DNA of Drosophila melanogaster bind in vitro to nuclear scaffolds from both yeast species. In view of these results, we have assayed the ability of the Drosophila SARs to promote autonomous replication of plasmids in the two yeast species. Two of the Drosophila SARs have autonomously replicating sequence activity in budding yeast, and three function in fission yeast, while four flanking non-SAR sequences are totally inactive in both.  相似文献   

16.
B B Amati  S M Gasser 《Cell》1988,54(7):967-978
We describe here for the first time the isolation of a yeast nuclear scaffold that maintains specific interactions with yeast genomic DNA sequences. The scaffold-DNA interaction is reversible and saturable, and some binding sites are conserved between yeast and Drosophila KC cells. Second, we find that the specific sequences bound to the yeast nuclear scaffold are the putative origins of replication (ARS elements) and a chromosomal centromere, CENIII. The scaffold association has been closely mapped at the ARS1 locus, and appears to include the 11 bp ARS consensus, but not the ABF-1 binding site. Competition studies show that ARS1 does not compete for CENIII binding, allowing us to distinguish two classes of scaffold attachment sites by functional and structural criteria.  相似文献   

17.
18.
We have characterized a family of moderately repetitive autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae. Restriction mapping, deletion studies and hybridization studies suggest that these ARSs, which are probably less than 350 base-pairs in size, share one common feature: each is located close to, but not within, a repetitive sequence (131) of approximately 10(3) to approximately 1.5 X 10(3) base-pairs in length. These ARSs can be divided into two classes (X and Y) by their sequence homology and genomic environments. Each of the class X ARSs is embedded within a repetitive sequence (X) of variable length (approximately 0.3 X 10(3) to approximately 3.75 X 10(3) base-pairs); each of the class Y ARSs is embedded within a highly conserved repetitive sequence (Y) of approximately 5.2 X 10(3) base-pairs in length. Both of these sequences are located directly adjacent to the 131 sequence.  相似文献   

19.
We have analyzed the organization of the chicken alpha-globin gene domain using DNA miniarrays and have found two novel chromatin loop attachment regions. We have found a 40-kb loop domain that includes all the alpha-globin genes in cells of erythroid origin. One of the domain borders colocalizes almost exactly with a strong MAR element and with a block of enhancer-blocking elements found earlier at the upstream end of the alpha-globin gene domain. The domain structure was found to be different in a lymphoid cell line DT40. We propose to use the technique of DNA arrays to map the nuclear matrix attachment sites that define the borders of chromosome loop domains. The technique of DNA arrays permits a large number of DNA sequences to be immobilized on a glass or nylon matrix. This may prove useful for mapping chromatin loop positions within the human genome by using a pool of chromatin loop attachment regions as a probe in a hybridization with a DNA chip containing a specific DNA region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号