首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the determination of cycloserine in human plasma is developed using niacin as internal standard (IS). The analyte and IS were extracted from 500 μL of human plasma via solid phase extraction on Waters Oasis MCX cartridges. Chromatographic separation was achieved on a Peerless Basic C18 (100 mm × 4.6mm, 3 μm) column under isocratic conditions. Detection of analyte and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for cycloserine and niacin were at m/z 103.1 → 75.0 and 124.1 → 80.1 respectively. The method was fully validated for its selectivity, interference check, sensitivity, carryover check, linearity, precision and accuracy, reinjection reproducibility, recovery, matrix effect, ion suppression/enhancement, stability and dilution integrity. The limit of detection (LOD) and lower limit of quantitation of the method were 0.0013 and 0.20 μg/mL respectively with a linear dynamic range of 0.20-30.00 μg/mL for cycloserine. The intra-batch and inter-batch precision (%CV) across six quality control levels was less than 8.0% for cycloserine. The method was successfully applied to a bioequivalence study of 250 mg cycloserine capsule formulation in 24 healthy Indian male subjects under fasting condition.  相似文献   

2.
A highly sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of forsythiaside in rat plasma using epicatechin as internal standard. The analytes were extracted by solid-phase extraction and chromatographied on a C18 column eluted with a gradient mobile phase of acetonitrile and water both containing 0.2% formic acid. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 623 → 161 and m/z 289 → 109 for forsythiaside and epicatechin, respectively. The assay was linear over the concentration ranges of 2.0–50.0 and 50.0–5000.0 ng/mL with limits of detection and quantification of 0.2 and 1.0 ng/mL, respectively. The precision was <10.8% and the accuracy was >91.9%, and extraction recovery ranged from 81.3% to 85.0%. This method was successfully applied to a pharmacokinetic study of forsythiaside in rats after intravenous (20 mg/kg) and oral (100 mg/kg) administration, and the result showed that the compound was poorly absorbed with an absolute bioavailability being approximately 0.5%.  相似文献   

3.
A sensitive and rapid LC-MS/MS method was developed and validated for the determination of levamisole in human plasma. The assay was based on liquid-liquid extraction of analytes from human plasma with ethyl ether. Chromatographic separation was carried on an Agilent HC-C(8) column (150 mm × 4.6 mm, 5 μm) at 40°C, with a mobile phase consisting of acetonitrile-10 mM ammonium acetate (70:30, v/v), a flow rate of 0.5 mL/min and a total run time of 6 min. Detection and quantification were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 205.1→178.2 for levamisole, and m/z 296.1→264.1 for mebendazole (internal standard). The assay was linear over a concentration range of 0.1-30 ng/mL with a lower limit of quantification of 0.1 ng/mL. The coefficient of variation of the assay precision was less than 8.5%. The assay was successfully used to analyze human plasma samples in a pharmacokinetic study where levamisole was administered as a liniment.  相似文献   

4.
A highly sensitive and specific LC-MS/MS method has been developed for simultaneous estimation of itraconazole (ITZ) and hydroxyitraconazole (OH-ITZ) with 500 microL of human plasma using fluconazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Solid phase extraction process was used to extract ITZ, OH-ITZ and IS from human plasma. The total run time was 3.0 min and the elution of ITZ, OH-ITZ and IS occurred at 2.08 min, 1.85 min and 1.29 min, respectively; this was achieved with a mobile phase consisting of 0.2% (v/v) ammonia solution:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPurity C(18) (50 mm x 4.6 mm, 5 microm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.50 ng/mL for both ITZ and OH-ITZ. A linear response function was established for the range of concentrations 0.5-263 ng/mL (r>0.998) for both ITZ and OH-ITZ. The intra- and inter-day precision values for ITZ and OH-ITZ met the acceptance as per FDA guidelines. ITZ and OH-ITZ were stable in the battery of stability studies, viz., bench-top, auto-sampler, dry extract and freeze/thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

5.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

6.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

7.
Letosteine has been found to be effective in treating patients with chronic bronchopneumopathies in clinical practice. To provide robust support for its pharmacokinetic and clinical studies, a rapid and sensitive method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the analysis of letosteine in plasma samples. After protein precipitation, the plasma samples were separated on a reversed-phase C(18) column in less than 1.5 min. The LC-MS/MS system was performed in the positive ion multiple-reaction-monitoring (MRM) mode to produce intensive product ions of m/z 280.1→160.0 for letosteine and m/z 248.1→121.1 for the internal standard, tinidazole. The method was found to have excellent linearity (r ≥ 0.9974), precision (RSD ≤ 5.83%), extraction recovery (71.8-73.0%) and stability (RE, -8.45% to 9.03%) over a concentration range of 0.1140-152.0 μgL(-1). Compared to the previous published radioactive method, LC-MS/MS method showed many advantages including shorter analysis time, simpler preparation procedure, increased sensitivity as well as lower safety risks. In addition, this method was successfully applied to study the pharmacokinetics of letosteine following a single and multiple dose oral administration in Chinese healthy volunteers.  相似文献   

8.
Cloperastine is a central antitussive used to reduce the frequency and intensity of coughing on a short-term basis. In this study, a reliable chiral LC-MS/MS technology has been developed for the quantification of cloperastine enantiomers in the rat plasma. Carbinoxamine was selected as the internal standard. The enantioseparation of cloperastine was performed on a Chiralpak IA column with a mobile phase composed of acetonitrile-water-ammonium hydroxide (80:20:0.1, v/v/v) at a flow rate of 0.6 mL/min. Cloperastine enantiomers were detected by mass spectrometry in multiple reaction monitoring mode with a positive electrospray ionization source. The method was validated over the linear concentration range of 0.05 to 10.0 ng/mL (5.0 × 10−4 ng to 0.10 ng) for both enantiomers. The lower limit of quantification (LLOQ) for each analyte was determined as 0.05 ng/mL. The relative standard deviations (RSDs) of intraday and interday precision was less than 13.9%, and the relative error (RE) of accuracy ranged from −5.4% to 6.1%, which were within the acceptance criteria. Finally, an application to the stereoselective pharmacokinetics of cloperastine in rats was successfully realized in our assay. The developed method on a commercially available Chiralpak IA column under isocratic mobile phase is advantageous to analyze cloperastine enantiomers in plasma samples collected for enantioselective metabolism or drug interaction studies.  相似文献   

9.
A novel, sensitive and specific LC-MS/MS method with silica-based solid-phase extraction was developed for simultaneous determination of ipratropium (IPR) and salbutamol (SAL) in rat plasma. Chromatographic separation was achieved on a Shiseido Capcell Pak CR column (SCX:C(18)=1:4, 150 mm × 2.0 mm, 5 μm) with a mobile phase consisting of methanol/water (85:15, v/v) containing 20 mmol/L ammonium formate and 0.1% formic acid at a flow rate of 0.3 mL/min. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via multiple reaction monitoring (MRM) under positive ionization mode. This method was validated in terms of specificity, linearity, accuracy (within ±115.4%), intra- and inter-day precision (<11.4%) over the concentration range of 8-1612 pg/mL for IPR and 50-10,000 pg/mL for SAL. In addition, stability and matrix effects of IPR and SAL in plasma were evaluated. This method has been successfully applied to the pharmacokinetic study of compound ipratropium bromide aerosol mainly containing ipratropium bromide (IB) and salbutamol sulphate (SS) after inhalation in rats.  相似文献   

10.
A new, simple, sensitive and specific reversed-phase high performance liquid chromatographic (HPLC) method using tandem mass spectrometry detection was initially developed and validated for the analysis of 10-(2-pyrazolyl-ethoxy)-(20S)-camptothecin (CPT13) in rat plasma. Pretreatment of the sample obtained from plasma involved a single protein precipitation step with using acetonitrile containing 0.1% formic acid. An aliquot of 20 μl was injected into a C-18 column. The chromatographic separation was achieved using the mobile phase consisting of acetonitrile:water (35:65) at a flow rate of 1.0 mL/min. The total run time for each sample was 10 min, and camptothecin (CPT, IS) and CPT13 were well separated with retention times of 5.1 min and 5.6 min, respectively. Detection was performed using a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via an electrospray ionization (ESI) source. The calibration curve was linear (r2 = 0.9998) over the concentration range of 1-1000 ng/mL, with a LLOQ of 1 ng/mL for CPT13. The inter- and intra-day precision (%R.S.D.) were <2.58% and 6.28%, respectively, and the accuracies (%) were within the range of 97.34-110.67%. CPT13 in rat plasma was stable when stored at -20 °C or 4 °C for three freeze-thaw cycles, The method was employed for the first time during pharmacokinetic studies of CPT13 in rats following a single intravenous dose (0.1 mg/kg) and three different oral doses (50 mg/kg, 30 mg/kg, and 10 mg/kg). This fully validated method was successfully applied to a pharmacokinetic study of CPT13 in rats.  相似文献   

11.
A highly sensitive and ultra-fast high performance liquid chromatography- tandem mass spectrometry (LC–MS/MS) assay is developed and validated for the quantification of Lenalidomide in human plasma. Lenalidomide is extracted from human plasma by Liquid- Liquid Extraction by Ethyl Acetate and analyzed using a reversed phase isocratic elution on a XTerra RP18, (4.6 × 50 mM, 5 µm) column. A 0.1% Formic acid: Methanol (10:90% v/v), is used as mobile phase and detection was performed by Triple quadrupole mass spectrometry LC-MS/MS using electrospray ionization in positive mode. Fluconazole is used as the internal standard. The lower limit of quantification is 9.999 ng/mL for Lenalidomide. The calibration curves are consistently accurate and precise over the concentration range of 9.999 to 1010.011 ng/mL in plasma for Lenalidomide. This novel LC–MS/MS method competes with all the regulatory requirements and shows satisfactory accuracy and precision and is sufficiently sensitive for the performance of pharmacokinetic and bioequivalence studies in humans.  相似文献   

12.
A sensitive, precise and accurate quantitative LC-MS/MS method for the measurement of naproxen in human plasma was developed and completely validated according to current FDA and EMA guidelines. The new method employs acetonitrile protein precipitation for sample preparation and uses ketoprofen as the internal standard. Suitability of the new assay was assessed in comparison with 36 reported bioanalytical assays and the pharmacokinetic results obtained by the new method were compared to 11 reported studies in humans. The principal advantage of this LC-MS/MS method is the simultaneous achievement of high absolute recovery (90.0±3.6%), acceptable sensitivity (lower limit of quantitation of 0.100 μg/mL), high inter-day precision (CV≤9.4%), high analytical recovery (between 94.4 and 103.1%), and excellent linearity over the concentration range 0.100-50.0 μg/mL (r(2)≥0.998) combined with a short run time of only 2 min.  相似文献   

13.
Helicid is a traditional Chinese medicine used to treat headache and insomnia with definite effects. To facilitate pharmacokinetic studies of helicid in man, a sensitive and specific LC-MS/MS method for the quantitative detection of helicid in human plasma was developed and validated. The method involved the addition of bergeninum as the internal standard (IS), protein precipitation, HPLC separation, and quantification by MS/MS system using negative electrospray ionization in the multiple reaction monitoring mode (MRM). The precursor→product ion transitions were monitored at m/z 282.8→120.9 for helicid and m/z 326.9→192.2 for the IS, respectively. The lower limit of quantification (LLOQ) was 0.2 μg/L. The calibration curves for helicid was linear over a concentration range of 0.2-20 μg/L. The intra- and inter-batch analyses of QC samples at 0.4, 2, 20 μg/L indicated good precision (%R.S.D. between 2.69 and 5.47%) and accuracy (between 96.15 and 105.05%). The helicid was stable in human plasma stored at room temperature for at least 24h, 4°C for at least 24h, -20°C for at least 1 month, and for routine three freeze-thaw cycles. This accurate and specific assay provides a useful method for evaluating the pharmacokinetic profile of helicid in humans.  相似文献   

14.
15.
In order to study the effect of a diet on metabolites found in body fluids such as plasma, we have developed and validated a UPLC/MS method. While methods using NMR have been well established to analyse different biological tissues, recent studies have described robust untargeted UPLC-MS methods for plasma analysis. One major concern when profiling plasma is the presence of an important quantity of proteins which have to be precipitated without any loss of metabolites prior to LC/MS analysis. The utilization of untargeted approaches in nutritional metabolomics still suffers from the lack of identification of specific biomarkers. We therefore suggest an alternative method still using a global approach but focusing at the same time on metabolites previously described in human plasma in order to detect biomarkers of metabolic dysregulations. Thus, to fulfil our objectives, analytical parameters were tested (i) the anticoagulant type for sample collection, (ii) the protein precipitation method and (iii) UPLC/MS analytical conditions. Three protein precipitation methods and two anticoagulants were tested and compared. The method utilizing blood collection on heparin and methanol precipitation was chosen for giving the most reproducible results while keeping the complexity of the sample. Finally, a validation was proposed to evaluate the stability of this analytical method applied to a large batch of samples for nutritional metabolomic studies.  相似文献   

16.
A sensitive, simple and highly selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and evaluated to determine simultaneously the concentrations of pseudoephedrine and cetirizine in human plasma. The chief benefit of the present method is the minimal sample preparation, as the procedure is only one-step protein precipitation. Two drugs were separated on a C(8) column and analyzed by LC/MS/MS using positive electrospray ionisation (ESI). The method had a chromatographic run time of 12.0 min and a linear calibration curve over the concentration range of 1.0-800 ng/ml for pseudoephedrine and 1.0-400 ng/ml for cetirizine, respectively. The lower limit of quantification of the two drugs was 1.0 ng/ml, respectively. The intra- and inter-batch precisions were less than 9.7%. The method described herein has been first used to reveal the pharmacokinetic characters in healthy Chinese volunteers treated with oral administration of different dosages of cetirizine dihydrochloride and controlled-released pseudoephedrine hydrochloride compound tablet, and approached the influence of a standard meal on the extent and rate of absorption of the combination tablet.  相似文献   

17.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of hydroxysafflor yellow A (HSYA) in human plasma. HSYA was extracted from human plasma by using solid-phase extraction technique. Puerarin was used as the internal standard. A Shim-pack VP-ODS C(18) (150mm x 4.6mm, 5 microm) column and isocratic elution system composing of methanol and 5mM ammonium acetate (80:20, v/v) provided chromatographic separation of analytes followed by detection with mass spectrometry. The mass transition ion-pair was followed as m/z 611.19-->491.19 for HSYA and m/z 415.19-->295.10 for puerarin. The proposed method has been validated with a linear range of 1-1000 ng/ml for HSYA with a correlation coefficient >/=0.999. The lower limit of quantitation was 1 ng/ml. The intra-batch and inter-batch precision and accuracy were within 10%. The average extraction recovery was 81.7%. The total run time was 5.5 min. The validated method was successfully applied to the study on pharmacokinetics of HSYA in 12 healthy volunteers after a single oral administration of safflower oral solution containing 140 mg of HSYA.  相似文献   

18.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to quantify griseofulvin in human plasma using propranolol hydrochloride as internal standard (IS). Samples were prepared using solid phase extraction and analysed without drying and reconstitution. The analytes were chromatographed on Hypersil, hypurity C18 reverse phase column under isocratic conditions using 0.05% formic acid in water:acetonitrile (30:70, v/v) as the mobile phase. Total chromatographic run time was 3.0 min. Quantitation was done on a triple quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring (MRM) mode to detect parent-->product ion transition for analyte and IS. The method was validated for sensitivity, matrix effect, accuracy and precision, linearity, recovery and stability studies. Linearity in plasma was observed over the concentration range 20-3000 ng/mL for griseofulvin. Lower limit of quantification (LLOQ) achieved was 20 ng/mL with precision (CV) less than 10% using 5 microL injection volume. The absolute recovery of analyte (87.36%) and IS (98.91%) from spiked plasma samples was consistent and reproducible. Inter-batch and intra-batch coefficients of variation across four validation runs (LLOQ, LQC, MQC and HQC) was less than 7.5%. The accuracy determined at these levels was within +/-4.2% in terms of relative error. The method was applied to a pilot bioequivalence study of 500 mg griseofulvin tablet in six healthy human subjects under fed condition.  相似文献   

19.
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of five flavonoids including scutellarin, naringenin, apigenin, luteoline and wogonin in rat plasma using sulfamethalazole as internal standard (IS). Plasma samples were pretreated with liquid-liquid extraction procedure and acid hydrolysis method was used for converting conjugated flavonoids to their respective free forms. The chromatographic separation was performed on a C(18) column with a linear gradient elution using a mobile phase consisted of 0.01% acetic acid and methanol. The detection was accomplished by multiple-reaction monitoring (MRM) scanning with electrospray ionization (ESI) source operating in the negative ionization mode. The optimized mass transition ion-pairs (m/z) monitored for scutellarin, naringenin, apigenin, luteoline, wogonin and IS were 461.1/285.1, 271.0/119.0, 269.0/117.0, 285.0/132.9, 283.0/268.0 and 252.0/155.9, respectively. The method was linear for all analytes over investigated ranges with all correlation coefficients greater than 0.9915. The lower limit of quantitation (LLOQ) of scutellarin was 9.15 ng/mL and other compounds were all less than 2.0 ng/mL. The proposed method showed appropriate accuracy and repeatability and was suitable for pharmacokinetic studies of the five flavonoids after oral administration of Scutellaria Barbata extract.  相似文献   

20.
A sensitive and reliable method was developed to quantitate phenylephrine in human plasma using liquid chromatography-electrospray tandem mass spectrometry. The assay was based on solid-phase extraction with C18 cartridges and hydrophilic interaction chromatography performed on a pentafluorophenylpropylsilica column (50 mm x 4 mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (90:10, v/v). Quantification was through positive-ion mode and selected reaction monitoring at m/z 168.1-->135.0 for phenylephrine and m/z 182.1-->135.0 for internal standard etilefrin, respectively. The lower limit of quantitation was 51 pg/ml using 0.25 ml of plasma and linearity was observed from 51 to 5500 pg/ml. Within-day and between-day precision expressed by relative standard deviation was less than 12% and inaccuracy did not exceed 8% at all levels. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号