首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Genomics》2020,112(5):3803-3814
FT-INTERACTING PROTEIN (FTIP) gene family in rice are the members of multiple C2 domain and transmembrane region proteins (MCTPs). There are many homologs of OsFTIPs in plants; however, the bioinformatics of them remains unclear. In the studies, 13 OsFTIP genes are identified in rice. OsFTIPs are unevenly located in 12 chromosomes. The OsFTIPs are phylogenetically divided into three clades. Cis-elements respond to abiotic stress, light, and hormones are found in the promoter region of OsFTIPs which are induced by the stimuli. All OsFTIPs are expressed with different profiles. Syntenic analysis of 128 OsFTIPs and FTIP-like homologs reveals that various number of gene pairs are identified between rice and other species. The 128 FTIP-like homologs are divided into six groups which fall into three classes. Ten motifs are shared by most OsFTIPs and their homologs. The studies provide a theoretical basis for further elucidating the functions of OsFTIP gene family.  相似文献   

4.
Calcium-dependent protein kinases (CDPKs) are Ca2+-binding proteins known to play crucial roles in Ca2+ signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.  相似文献   

5.
Hu  Lifang  He  Haohua  Zhu  Changlan  Peng  Xiaosong  Fu  Junru  He  Xiaopeng  Chen  Xiaorong  Ouyang  Linjuan  Bian  Jianmin  Liu  Shiqiang 《Journal of plant research》2017,130(1):95-105
Journal of Plant Research - The enzymes of the chalcone synthase family are also known as type III polyketide synthases (PKS), and produce a series of secondary metabolites in bacteria, fungi and...  相似文献   

6.
Kong F  Wang J  Cheng L  Liu S  Wu J  Peng Z  Lu G 《Gene》2012,499(1):108-120
  相似文献   

7.
8.
9.
10.
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (
LocusAnnotationNomenclatureA*B*C*
AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049
AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117
AT1G67560lipoxygenase family proteinLOX4917104514.68.0035
AT1G72520lipoxygenase, putativeLOX6926104813.17.5213
AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033
AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

11.
葡萄生长素响应基因家族生物信息学鉴定和表达分析   总被引:1,自引:0,他引:1  
袁华招  赵密珍  吴伟民  于红梅  钱亚明  王壮伟  王西成 《遗传》2015,37(7):720-730
生长素响应基因家族能调节植物体内生长素平衡和生长素信号途径。文章采用生物信息学方法检索获得葡萄(Vitisvinifera L.)基因组数据库中的生长素响应基因,通过分析其染色体定位、基因共线性和系统进化,发现葡萄基因组含有25个AUX_IAA基因、19个ARF基因、9个GH3基因、42个LBD基因。这些生长素响应基因不均匀分布在葡萄的19条染色体上,部分家族基因在染色体上形成基因簇。葡萄芯片数据结果表明,生长素响应基因在葡萄不同时期的果实和叶芽中均有表达,尤其在果实转色期、叶芽萌发或休眠期表达量急剧变化。研究结果为葡萄生长素响应基因在叶片和果实发育过程中的功能研究提供参考。  相似文献   

12.
Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families   总被引:3,自引:0,他引:3  
Diego?LijavetzkyEmail author  Pilar?Carbonero  Jesús?Vicente-Carbajosa 《BMC evolutionary biology》2003,3(1):17
  相似文献   

13.
Genome-wide identification of the class III aminotransferase gene family in rice and expression analysis under abiotic stress     
Jian Sun  Dong-Wei Xie  Hong-Wei Zhao  De-Tang Zou 《Genes & genomics.》2013,35(5):597-608
Aminotransferases are pyridoxal 5′-phosphate-dependent enzymes that play crucial roles in plant growth, development, and responses to abiotic stress. The class III aminotransferase family (ATIII family) is an important subfamily. However, no characterization of rice ATIII genes has been previously reported. Using available rice genome sequence information, we identified 12 japonica and 13 indica ATIII genes that were randomly localized on chromosomes 2, 3, 4, 5, 7, 8, and 11. Information provided by the Plant Genome Duplication Database revealed that four japonica and four indica ATIII genes are the results of segmental duplications, and two japonica and six indica genes resulted from tandem duplications. A phylogenetic analysis of the ATIII genes in japonica, indica and Arabidopsis enabled the classification of the genes into six different groups, and the characteristics were established before the monocot-dicot and japonicaindica split. An analysis of the Ka/Ks, divergence time and average indel length suggested the diverse selection styles of the duplicated gene pairs. Gene structure and motif analyses revealed that the ATIII gene family has experienced extensive divergence. Real-time PCR was performed to examine the expression pattern of the japonica ATIII genes in response to various abiotic stresses including drought, salt, and cold. The results suggested that most of the genes were differentially up- or down-regulated in rice seedlings in response to at least one stress factor, which indicates the key role of the rice ATIII gene family in responding to abiotic stresses. These results provide a basis for elucidating the roles of the ATIII genes and their further functional analysis under abiotic stresses.  相似文献   

14.
Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice   总被引:2,自引:0,他引:2  
Neha Vaid  Prashant Kumar Pandey  Narendra Tuteja 《Plant molecular biology》2012,80(4-5):365-388
Lectin receptor-like kinases (LecRLKs) are class of membrane proteins found in higher plants that are involved in diverse functions ranging from plant growth and development to stress tolerance. The basic structure of LecRLK protein comprises of a lectin and a kinase domain, which are interconnected by transmembrane region. Here we have identified LecRLKs from Arabidopsis and rice and studied these proteins on the basis of their expression profile and phylogenies. We were able to identify 32 G-type, 42 L-type and 1 C-type LecRLKs from Arabidopsis and 72 L-type, 100 G-type and 1 C-type LecRLKs from rice on the basis of their annotation and presence of lectin as well kinase domains. The whole family is rather intron-less. We have sub-grouped the gene family on the basis of their phylogram. Although on the basis of sequence the members of each group are closely associated but their functions vary to a great extent. The interacting partners and coexpression data of the genes revealed the importance of gene family in physiology and stress related responses. An in-depth analysis on gene-expression suggested clear demarcation in roles assigned to each gene. To gain additional knowledge about the LecRLK gene family, we searched for previously unreported motifs and checked their importance structurally on the basis of homology modelling. The analysis revealed that the gene family has important roles in diverse functions in plants, both in the developmental stages and in stress conditions. This study thus opens the possibility to explore the roles that LecRLKs might play in life of a plant.  相似文献   

15.
Genome-wide identification and expression analysis of the expansin gene family in tomato   总被引:2,自引:0,他引:2  
Yongen Lu  Lifeng Liu  Xin Wang  Zhihui Han  Bo Ouyang  Junhong Zhang  Hanxia Li 《Molecular genetics and genomics : MGG》2016,291(2):597-608
  相似文献   

16.
Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers     
Hu L  Liu S 《Genetics and molecular biology》2011,34(4):624-633
  相似文献   

17.
Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat     
Yang  Yanlin  Xu  Tian  Wang  Honggang  Feng  Deshun 《Molecular biology reports》2021,48(2):1269-1279
Molecular Biology Reports - Auxin is an important endogenous hormone in plants. The YUCCA gene encodes a flavin monooxygenase, which is an important rate-limiting enzyme in the auxin synthesis...  相似文献   

18.
桃WRKY基因家族全基因组鉴定和表达分析     
谷彦冰  冀志蕊  迟福梅  乔壮  徐成楠  张俊祥  周宗山  董庆龙 《遗传》2016,38(3):254-270
WRKY转录因子是植物中最大的转录调控家族之一,在生物和非生物胁迫以及植物生长和发育过程中起着重要调控作用.本文利用HMMER 3.0软件,使用WRKY保守域全蛋白序列(Pfam数据库编号:PF03106)鉴定桃(Prunus persica L.)基因组中的WRKY基因;利用DNAMAN 5.0,WebLogo 3,MEGA5.1,MapInspect和MEME等软件对其蛋白序列进行生物信息学分析.本文共鉴定得到61个桃WRKY基因.进化树分析结果显示,桃WRKY蛋白分为Ⅰ,Ⅱ和Ⅲ类型,类型Ⅰ分为Ⅰ-C亚组和Ⅰ-N亚组,类型Ⅱ分为Ⅱ-a,II-b,II-c,II-d和II-e亚组.WRKY结构域分析显示,WRKY结构域高度保守,绝大多数都含有WRKYGQK七肽和锌指结构.染色体定位分析显示,桃WRKY基因分布于8条染色体中,呈不均匀分布.内含子和外显子结构分析表明,WRKY基因结构进化高度保守.保守元件分析表明,桃WRKY基因家族包含5个保守元件,元件1,2和3为WRKY盒,元件4,5为未知盒.桃WRKY基因家族都包含有WRKY盒,类型Ⅰ中含有2个WRKY盒;II-d亚组中含有未知元件5.半定量和荧光定量PCR结果显示,16个WRKY基因均在桃的根,茎,叶,花和果中表达,但其相对表达水平不同.  相似文献   

19.
番茄PPR基因家族的鉴定与生物信息学分析     
丁安明  李凌  屈旭  孙亭亭  陈雅琼  宗鹏  李尊强  龚达平  孙玉合 《遗传》2014,36(1):77-84
PPR(Pentatricopeptide repeats)基因家族在植物中广泛存在, 其在植物生长发育过程中至关重要。文章采用生物信息学方法, 利用Pfam已鉴定的PPR保守结构域序列检索番茄(Solanum lycopersicum L.)基因组计划注释的蛋白序列, 最终确定了番茄中可能存在的471个PPR编码基因; 根据拟南芥(Arabidopsis thaliana L.)中鉴定的各个结构域的特点对其进行了蛋白结构分析、分类和保守序列分析, 并对番茄PPR基因家族进行了系统进化树构建、染色体定位、亚细胞定位预测、表达和GO分析等。结果表明:番茄PPR基因家族分为P和PLS两个亚家族, 各占序列数目的一半, PLS亚家族又分为PLS、E、E+和DYW四类, 且在进化树中形成不同的分支; 各个结构域在植物中非常保守; PPR基因家族分布在番茄12条染色体上, 且多数无内含子结构; 大部分PPR蛋白具有线粒体或叶绿体定位序列, GO分析表明PPR蛋白参与RNA相关的生物学过程  相似文献   

20.
南瓜SWEET蛋白家族的全基因组鉴定与进化分析     
申长卫  袁敬平 《广西植物》2021,41(1):40-54
SWEET(sugar will eventually be exported transporter)家族是一种新型的糖转运体,该家族基因在碳水化合物运输、发育、环境适应性和寄主-病原相互作用等多个过程中发挥着重要作用.为更好地了解南瓜发育的分子机理,该研究基于已知的南瓜基因组数据库,利用生物信息学方法对中国南瓜SW...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号