首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gastrin/CCK-like immunoreactivity in the nervous system of coelenterates   总被引:2,自引:0,他引:2  
Using immunocytochemistry, gastrin/CCK-like immunoreactivity is found in sensory nerve cells in the ectoderm of the mouth region of hydra and in nerve cells in the endoderm of all body regions of the sea anemone tealia. These results are corroborated by radioimmunoassay: One hydra contains at least 5 fmole and one tealia at least 2 nmole gastrin/CCK-like immunoreactivity. Reactivities towards gastrin and CCK antisera with different specificities suggest that the coelenterate gastrin/CCK-like peptide contains the C-terminal amino-acid sequence common to mammalian gastrin and CCK. In addition the radioimmunochemical data indicate that the coelenterate peptide also contains an amino-acid sequence that resembles the sequence 20-30 of porcine CCK-33, but that no other sequences of gastrin are present. Thus, it is probably more CCK-like than gastrin-like.  相似文献   

2.
Abundant FMRFamide immunoreactivity has been found in the nervous systems of all hydrozoan, anthozoan, scyphozoan and ctenophoran species that were looked upon. This general and abundant occurrence shows that FMRFamide-like material must play a crucial role in the functioning of primitive nervous systems.  相似文献   

3.
Summary Gastrin/cholecystokinin (gastrin/CCK)-like immunoreactivity has been detected in the brain, suboesophageal ganglion and corpora cardiaca of the larva of Aeschna cyanea by radioimmunoassay and immunohistochemistry, by use of two antisera raised against the sulfated (CCK-8S) and the unsulfated form (CCK-8NS) of the carboxyl terminal octapeptide. Numerous immunoreactive neurons were demonstrated in the protocerebrum (exclusive of optic lobes) and suboesophageal ganglion where 20 and 15 symmetrical clusters of reactive cells, respectively, were observed. Immunoreactive cells also occurred in the tritocerebrum, the optic lobes and the frontal ganglion. In the corpora cardiaca, gastrin/CCK-like material was found both within intrinsic cells and axon terminals. RIA measurements support the immunohistochemical results in so far as large amounts of gastrin/CCK-like material were detected in the brain, corpora cardiaca and suboesophageal ganglion complex. Both boiling water-acetic acid- and methanol-extraction procedures were performed. Comparisons of the results lead to the conclusion that a large part of the gastrin/CCK-like material occurs as small molecules. Immunohistochemical procedures performed on material fixed in a solution of picric acid-paraformaldehyde demonstrated differences in the immunoreactivity of the tested antisera. First, the immunohistochemical reaction was always more pronounced when the CCK-8NS antiserum was used instead of the CCK-8S antiserum, which may be interpreted by a lower affinity of the latter. In the second place, some neurons strongly stained by the CCK-8NS antiserum were only very faintly if at all stained by the CCK-8S antiserum, which may mean that different peptides or at least distinct forms of the same precursor are detected.  相似文献   

4.
5.
Washington MC  Sayegh AI 《Peptides》2011,32(8):1600-1605
We and others have shown that gastrin-releasing peptide (GRP) reduces food intake. In this study, we determined the activation of the gastrointestinal and dorsal vagal complex (DVC) neurons by various forms of GRP to determine the pathway involved in this reduction. We found the following: (1) GRP-10, -27 and -29 (2.1 nmol/kg, i.p.) increased the Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) in the myenteric neurons of the stomach and the area postrema (AP) of the DVC; (2) GRP-27 and GRP-29 increased the Fos-LI in the myenteric plexus of the duodenum; and (3) only GRP-29 increased the Fos-LI in the submucosal plexus of the duodenum. In conclusion, GRP may reduce food intake by activating the area postrema. The enteric neurons may have a potential role in this reduction through the direct activation of the AP or exerting local gut actions, such as the stimulation of gut motility or secretions.  相似文献   

6.
We measured the immunoreactivity of the neuropeptide gastrin cholecystokinin 8 (gastrin/CCK 8) in neurons of the terrestrial slug Semperula maculata following acute treatment with mercuric chloride (HgCl2). The distribution of gastrin/CCK 8 was analyzed in neurons of different regions, specifically from cerebral ganglia (procerebrum (pro-c), mesocerebrum (meso-c) and metacerebrum (meta-c). In the control group, neurons of pedal, pleural, parietal and visceral ganglia showed positive immunoreactivity using vertebrate antiserum against gastrin/CCK 8. Gastrin/CCK 8 immunoreactivity was also seen in the fibers and neuropil region of all ganglia. In the cerebral ganglion, 10, 12 and 8 % of the neurons from pro-c, meso-c and meta-c, respectively, were stained with the antibody. The immunostaining was increased in neurons (giant, large, medium and small) after HgCl2 treatment. The treatment greatly increased the mucin content within the neurons. Exposure to HgCl2 enhanced gastrin immunoreactivity in the neurons and this increased with time. Results are discussed in the context of neuropathology in cerebral ganglia associated with the feeding behavior of Semperula maculata.  相似文献   

7.
In the gastrin and/or cholecystokinin-like immunoreactivity (G/CCK-LI) elution patterns of blood cells in human adults, erythrocyte (RBC) elution pattern has three peaks which are coeluted with gastrin-34 (G34), gastrin-17 (G17) and Vt, and polymorphonuclear leukocyte (PMN) and mononuclear cell (MNC) elution patterns have four peaks which are coeluted with Vo, G34, G17 and Vt. The content of G/CCK-LI in RBC is 1.20±0.54 fmole/108 cells (means±SD). Than in PMN and MNC is 1.44±0.67 p mole/108 cells and 1.67±0.76 p mole/108 cells, respectively.  相似文献   

8.
1. The presence of gastrin/CCK-like immunoreactive material in both muscle and mucosal layers of the whole gut, except the cardiac stomach, in Squalus acanthias has been confirmed by radioimmunoassay. The highest levels were measured in rectum and spiral intestine respectively. 2. Fractionation of the spiral intestine mucosal extract on DEAE 52 columns indicated the presence of multiple forms of gastrin/CCK in the elasmobranch gut. 3. Synthetic mammalian gastrin- and CCK-like peptides, when effective, increased the rhythmic activity and sometimes the basal tonus in smooth muscle preparations from the intestine or rectum. 4. The irregular effects of mammalian peptides on the motility indicated an essential difference from the mammalian counterpart in the structure of the elasmobranch peptide present in the gastrointestinal nerves.  相似文献   

9.
Bombesin-like immunoreactivity in the nervous system of hydra   总被引:2,自引:0,他引:2  
Summary With immunocytochemical methods, nerve cells have been detected in Hydra attenuata containing bombesin-like immunoreactivity. These nerve cells are located in the ectoderm of all body regions of the animal and are especially abundant in basal disk and tentacles. Radioimmunoassay of extracts of hydra demonstrated at least 0.2 pmol/g wet weight of bombesinlike immunoreactivity. The immunoreactive material elutes from Sephadex G-50 in a similar position to synthetic bombesin. The data show that bombesin-like peptides are among the phylogenetically oldest neuropeptides found so far.  相似文献   

10.
Summary FMRFamide-like immunoreactivity has been localized in different parts of the hydra nervous system. Immunoreactivity occurs in nerve perikarya and processes in the ectoderm of the lower peduncle region near the basal disk, in the ectoderm of the hypostome and in the ectoderm of the tentacles. The immunoreactive nerve perikarya in the lower peduncle region form ganglion-like structures. Radioimmunoassays of extracts of hydra gave displacement curves parallel to standard FMRFamide and values of at least 8 pmol/gram wet weight of FMRFamide-like immunoreactivity. The immunoreactive material eluted from Sephadex G-50 in several components emerging shortly before or after position of authentic FMRFamide. The presence of FMRFamide-like material in coelenterates shows that this family of peptides is of great antiquity.  相似文献   

11.
Neurotensin-like immunoreactivity in the nervous system of hydra   总被引:3,自引:0,他引:3  
Summary Neurotensin-like immunoreactivity is found in nerve fibers present in all body regions of hydra. The nerve fibers are especially numerous in the ectoderm at the bases of the tentacles and in the ectoderm at a site just above the foot. Radioimmunoassays of acetic-acid extracts of hydra, using various region-specific antisera towards mammalian neurotensin, show the presence of multiple neurotensin-related peptides. The amounts of these peptides vary between 1 and 350 pmol per gram wet weight. Gel filtration on Sephadex G-25 reveals a fraction of neurotensin-like peptides that crossreacts equally well with an antiserum directed against sequence 1–8 and an antiserum directed against sequence 6–13 of neurotensin. This fraction elutes also at the position of neurotensin and might closely resemble the mammalian peptide. A fraction eluting with the void volume crossreacts preferentially with antisera directed against sequences 1–8 and 10–13 of neurotensin. Several components of apparent lower molecular weight than neurotensin crossreact preferentially with an antiserum against sequence 10–13. These last peptides represent the major portion of the neurotensin-like peptides in hydra.  相似文献   

12.
Summary Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

13.
Neurocalcin-like immunoreactivity in the rat esophageal nervous system   总被引:1,自引:0,他引:1  
Neurocalcin is a newly identified neuronal calcium-binding protein. We tried here to investigate the immunohistochemical distribution of neurocalcin in the rat esophagus. Nerve cell bodies having neurocalcin immunoreactivity were found throughout the myenteric plexus. In the myenteric ganglia, two types of nerve terminals showed neurocalcin immunoreactivity. One was varicose terminals containing numerous small clear vesicles and forming a synapse with nerve cells. The other terminals were characterized by laminar or pleomorphic structure and many mitochondria. These laminar terminals were supposed to be sensory receptors of the esophageal wall. In the motor endplates of the striated muscles, nerve terminals containing many small clear vesicles and mitochondria also had neurocalcin immunoreactivity. After left vagus nerve cutting under the nodose ganglia, the number of immunopositive thick nerve fibers, laminar endings and nerve terminals on the striated muscles decreased markedly. Retrograde tracing experiments using Fast Blue showed extrinsic innervation of esophagus from ambiguus nucleus, dorsal motor nucleus of vagus, superior cervical ganglia, celiac ganglia, nodose ganglia and dorsal root ganglia. In the celiac ganglia, nodose ganglia and dorsal root ganglia, retrogradely labeled nerve cells were neurocalcin-immunoreactive. Neurons in the celiac ganglia may project varicose terminals, while nodose and dorsal root neurons project laminar terminals. Although cell bodies of motoneurons in the ambiguus nucleus lacked neurocalcin immunoreactivity, these neurons may contain neurocalcin only in the nerve terminals in the motor endplates. Neurocalcin immunoreactivity is distributed in many extrinsic and intrinsic neurons in the esophagus and this protein may play important roles in regulating calcium signaling in the neurons.  相似文献   

14.
Summary Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

15.
Substance P-like immunoreactivity in the nervous system of hydra   总被引:3,自引:0,他引:3  
Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

16.
Serotonin-like immunoreactivity was mapped using an antiserotonin antibody in wholemounts of the ventral nerve cord from dragonfly nymphs (Epitheca sp. and Pachydiplax longipennis). In both species, an immunoreactive cell ventral to each connective tract and an immunoreactive median cell cluster on the ganglion ventral surface were found in the unfused abdominal ganglia. Axon(s) from the median cell cluster branch in the anterior unpaired median nerve. Posterolaterally, in all of the ganglia examined, two or more intensely immunoreactive, bilaterally symmetric pairs of neurons were seen. Comparison of these posterolateral neurons, which appear to be serially homologous, with similar antiserotonin immunoreactive neurons described in other insects suggests that these neuron pairs may have cross-species homology as well.  相似文献   

17.
A highly specific polyclonal antiserum has been raised against periviscerokinin, the first neuropeptide isolated from the perisympathetic organs of insects (Predel et al. 1995). In this study, two different neuronal systems with periviscerokinin-like immunoreactivity were distinguished in the central nervous system of the American cockroach: (1) An intrinsic neuronal network, restricted to the head-thoracic region, was formed by intersegmental projecting neurons of the brain, suboesophageal ganglion and metathoracic ganglion. In addition, groups of local interneurons occurred in the proto- and tritocerebrum. (2) A typical neurohormonal system was stained exclusively in the abdomen; it was represented by abdominal perisympathetic organs which were supplied by three cell clusters located in each unfused abdominal ganglion. As revealed by nickel backfills, most neurons with axons entering the perisympathetic organs contained a periviscerokinin-like peptide. Immunoreactive fibres left the perisympathetic organs peripherally, innervated the hyperneural muscle and ran via the link nerves/segmental nerves to the heart and segmental vessels. All visceral muscles innervated by periviscerokinin-immunoreactive fibres were shown to be sensitive to periviscerokinin, whereas the hindgut gave no specific response to this peptide.  相似文献   

18.
Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

19.
The marked similarity between the primary structures of human, other vertebrate, and the invertebrate tunicate PACAP suggests that PACAP is one of the most highly conserved peptides during the phylogeny of the metazoans. We investigated the distribution of PACAP-like immunoreactivity in the nervous system of three oligochaete (Annelida) worms with immunocytochemistry. The distribution pattern of immunoreactivity was similar in all three species (Lumbricus terrestris, Eisenia fetida, and Lumbricus polyphemus). The cerebral ganglion contains numerous immunoreactive cells and fibers. A few cells and fibers were found in the medial and lateral parts of the subesophageal and ventral cord ganglia. In the peripheral nervous system, immunoreactivity was found in the enteric nervous system, in epidermal sensory cells, and in the clitellum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号