首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Local cortex E variations are well expressive indices of rate and peculiarities of energy metabolism. The brain E is determined by the ratio of processes occurring in two energy compartments in glycolysis, in whish glucose is split without oxygen utilization and in oxidative metabolism. In the present investigation, the brain cortex E changes were recorded with implanted platinum electrodes during slow wave sleep. Under such conditions, the E lowering detects acceleration in glycolytic compartment, whereas the E local rising shows acceleration in oxidative metabolism in the tissue surrounding the electrode. Earlier in rats, we have found that E significantly lowered in metabolic active cortical sites during episodes of SWS, and supposed that acceleration of glycolysis increased. Slow oscillations (a 20-40-sec prolongation of the amplitude up to several dozens millivolts) appeared at the same time. We considered these E slow oscillations to reflect changes in the rate in compartment of glycolysis. In this research, we have found the E slow oscillations to be created by regular episodes of ECoG-arousal which were accompanied by E decreases, i. e. by acceleration in glycolysis. We think the data presented show existence of functional system supporting a low level of arousal. As in any complex system with feed back connections, this system works in oscillatory regime.  相似文献   

3.
Nocturnal hypoxia is a major pathological factor associated with cardiorespiratory disease. During wakefulness, a decrease in arterial O2 tension results in a decrease in cerebral vascular tone and a consequent increase in cerebral blood flow; however, the cerebral vascular response to hypoxia during sleep is unknown. In the present study, we determined the cerebral vascular reactivity to isocapnic hypoxia during wakefulness and during stage 3/4 non-rapid eye movement (NREM) sleep. In 13 healthy individuals, left middle cerebral artery velocity (MCAV) was measured with the use of transcranial Doppler ultrasound as an index of cerebral blood flow. During wakefulness, in response to isocapnic hypoxia (arterial O2 saturation -10%), the mean (+/-SE) MCAV increased by 12.9 +/- 2.2% (P < 0.001); during NREM sleep, isocapnic hypoxia was associated with a -7.4 +/- 1.6% reduction in MCAV (P <0.001). Mean arterial blood pressure was unaffected by isocapnic hypoxia (P >0.05); R-R interval decreased similarly in response to isocapnic hypoxia during wakefulness (-21.9 +/- 10.4%; P <0.001) and sleep (-20.5 +/- 8.5%; P <0.001). The failure of the cerebral vasculature to react to hypoxia during sleep suggests a major state-dependent vulnerability associated with the control of the cerebral circulation and may contribute to the pathophysiologies of stroke and sleep apnea.  相似文献   

4.
A method of recording slow ROSP's changes of the brain in chronic animals was used. It has been shown that wakefulness was accompanied by quasisinusoidal oscillations of ROSP (periods--several seconds). During slow sleep, oscillations of ROSP became more complicated and their periods were longer. It is suggested that transitions from sleep to wakefulness and vice versa are connected with removal of maximums of oxidative metabolism tension between biochemical systems characterized by different rhythms of self-regulation. Rhythmic oscillations of ROSP reveal the possibility of separate functional system of the ROSP of the brain cortex to synchronize their oscillations in the brain tissue (biochemical synergism).  相似文献   

5.
6.
7.
8.
9.
To clarify the effect of cold stimulation during slow-wave sleep (SWS) on the sleep cycle, we conducted a sleep experiment. Five healthy males slept on a bedding system we developed to make the inside of bedding cooler. When the subject was sleeping deeply in the second and fourth SWS, the system cooled their bedding. When the subject's sleep condition shifted toward arousal, the cold air was stopped. As a result, all subjects’ sleep stage shifted to light sleep and reached arousal. After stopping stimulation, they immediately returned to the SWS at the first stimulation. But at the second stimulation, the sleep state did not return to the SWS.  相似文献   

10.
11.
12.
13.
In eleven genetically hypoprolactinemic rats (IPL nude rats) and five control rats (OFA), the sleep-waking cycle was continuously registered for 14 days at two ambient temperatures. At 23 degrees C, the slow wave sleep (SWS) duration of IPL rats was significantly higher (+6.8%, t = 5.4, p less than 0.001) than that of control rats, while the paradoxical sleep (PS) duration was lowered by 31.8% (t = 9.4, p less than 0.001). The circadian rhythm of PS disappeared while that of SWS persisted unchanged. At 30 degrees C, both sleep durations reached the level of control rats. The circadian rhythm of PS was however completely reversed: the PS acrophase was at 01 h while that of SWS was at 12 hrs. This first observation of spontaneous dissociation of the two states of sleep supports the hypothesis of two distinct circadian clocks, one for SWS, another for PS. It is suggested that hypothalamic prolactin and/or other still unknown genetic alterations might be responsible for the observed change in the PS circadian rhythm.  相似文献   

14.
15.
In view of the available published data concerning various concentration of neuromodulators in the brain during paradoxical sleep and wakefulness and the evidence for the influences of neuromodulators on efficiency of synaptic inputs to hippocampal neurons it is concluded that during paradoxical sleep, increase in concentrations of acetylcholine, cortisol, and dopamine and simultaneous decrease in serotonin and noradrenaline levels could synergistically lead to essential depression of efficacy of synaptic transmission in the polysynaptic pathway through the hippocampus (i.e. in the perforant path to dentate gyrus, from the dentate gyrus to CA3 area, from CA3 to CA1 area and from CA1 to the subiculum) but potentiation of the efficacy of the perforant input to pyramids of CA1 and CA3 areas and increase in efficacy of associative connections between CA3 neurones. The specified changes in functioning of the hippocampal loop can underlie differences in storing and extraction of information from memory during paradoxical sleep as compared to wakefulness.  相似文献   

16.
17.
Muramyl dipeptide does not induce slow-wave sleep or fever in rats   总被引:1,自引:0,他引:1  
The synthetic muramyl dipeptide, N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP), is reported to increase slow-wave sleep and body temperature in cats, rabbits, and squirrel monkeys. The present study examined the ability of MDP to induce sleep and fever in rats. MDP was administered IP at 50, 250 and 500 micrograms/kg. Sleep and body temperature were monitored for 12 hr. MDP failed to affect the duration of wakefulness, S1, S2, or total (S1 + S2) slow-wave sleep. There was also no change in the latency to the first episode of S2 sleep. In contrast, rapid-eye-movement (REM) sleep was significantly suppressed for the first 6 hr after 250 and 500 microgram/kg doses of MDP. There was, however, a rebound increase in REM sleep after the initial period of suppression which resulted in no overall change in the amount of REM sleep. Body temperature was unaffected by MDP. Thus, we conclude that MDP has neither sleep-promoting nor pyrogenic actions in the rat when administered systemically at doses reported to be effective in several other species.  相似文献   

18.
19.
We investigated circadian and homeostatic regulation of nonrapid eye movement (NREM) sleep in golden-mantled ground squirrels during euthermic intervals between torpor bouts. Slow-wave activity (SWA; 1-4 Hz) and sigma activity (10-15 Hz) represent the two dominant electroencephalographic (EEG) frequency components of NREM sleep. EEG sigma activity has a strong circadian component in addition to a sleep homeostatic component, whereas SWA mainly reflects sleep homeostasis [Dijk DJ and Czeisler CA. J Neurosci 15: 3526-3538, 1995; Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, and Czeisler CA. J Physiol (Lond) 505: 851-858, 1997]. Animals maintained under constant conditions continued to display circadian rhythms in both sigma activity and brain temperature throughout euthermic intervals, whereas sleep and wakefulness showed no circadian organization. Instead, sleep and wakefulness were distributed according to a 6-h ultradian rhythm. SWA, NREM sleep bout length, and sigma activity responded homeostatically to the ultradian sleep-wake pattern. We suggest that the loss of sleep-wake consolidation in ground squirrels during the hibernation season may be related to the greatly decreased locomotor activity during the hibernation season and may be necessary for maintenance of multiday torpor bouts characteristic of hibernating species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号