首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In sediment slurry experiments with anoxic marine sediments collected in Cape Lookout Bight, NC, and a site in mid-Chesapeake Bay, the rates of sulfate reduction and ammonium production decrease with increasing dilution of sediment with oxygen-free sea-water. The effect of sediment dilution on the rates of these processes can be described by a simple mathematical relationship, and when these rates are corrected for sediment dilution they yield values which agree well with direct measurements of these processes.In sediment slurry studies of amino acid utilization in Cape Lookout Bight sediments, the fermentative decarboxylation of glutamic acid (to -aminobutyric acid) or aspartic acid (to alanine or -alanine) did not occur when either of these amino acids were added to Cape Lookout Bight slurries. The addition of glutamic acid did however lead to a small (1) transient build-up of -aminoglutaric acid. Measured rates of glutamic acid uptake in these slurries also decreased with increasing sediment dilution.Molybdate inhibition experiments demonstrated that dissolved free amino acids represent 1–3% of the carbon sources/electron donors used for sulfate reduction in Cape Lookout Bight sediments. The direct oxidation of amino acids by sulfate reducing bacteria also accounts for 13–20% of the total ammonium produced. Glutamic acid, alanine, -aminoglutaric acid, aspartic acid and asparagine are the major amino acids oxidized by sulfate reducing bacteria in Cape Lookout Bight sediments.  相似文献   

2.
Anaerobic degradation of organic matter follows similar pathways in digesters and anaerobic freshwater sediments. The responsible microorganisms are linked in a complex food web, where short chain fatty acids and H2 are important intermediates. Degradation of short-chain fatty acids is endothermic under standard conditions and is only possible at low H2 partial pressures maintained by exothermic methanogenesis. The coupling between these endothermic and exothermic processes is delicate, and hence sensitive to environmental changes such as temperature variations. The effect of temperature on thermodynamics and on kinetics of these and other anaerobic degradation processes with emphasis on freshwater ecosystems is discussed.The author is with the Department of General Microbiology, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83 H, DK-1307 Copenhagen K, Denmark  相似文献   

3.
It has been shown that the coexistence of methanogenesis and reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes is based largely on the radial distribution of the respective microbial populations and relatively high hydrogen partial pressures in the gut lumen. Using Clark-type microelectrodes, we showed that the situation in Cubitermes orthognathus and other soil-feeding members of the subfamily Termitinae is different and much more complex. All major compartments of agarose-embedded hindguts were anoxic at the gut center, and high H2 partial pressures (1 to 10 kPa) in the alkaline anterior region rendered the mixed segment and the third proctodeal segment (P3) significant sources of H2. Posterior to the P3 segment, however, H2 concentrations were generally below the detection limit (<100 Pa). All hindgut compartments turned into efficient hydrogen sinks when external H2 was supplied, but methane was formed mainly in the P3/4a and P4b compartments, and in the latter only when H2 or formate was added. Addition of H2 to the gas headspace stimulated CH4 emission of living termites, indicating that endogenous H2 production limits methanogenesis also in vivo. At the low H2 partial pressures in the posterior hindgut, methanogens would most likely outcompete homoacetogens for this electron donor. This might explain the apparent predominance of methanogenesis over reductive acetogenesis in the hindgut of soil-feeding termites, although the presence of homoacetogens in the anterior, highly alkaline region cannot yet be excluded. In addition, the direct contact of anterior and posterior hindgut compartments in situ permits a cross-epithelial transfer of H2 or formate, which would not only fuel methanogenesis in these compartments, but would also create favorable microniches for reductive acetogenesis. In situ rates and spatial distribution of H2-dependent acetogenic activities are addressed in a companion paper (A. Tholen and A. Brune, Appl. Environ. Microbiol. 65:4497–4505, 1999).  相似文献   

4.
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.  相似文献   

5.
Epilimnetic sulfate reduction and its relationship to lake acidification   总被引:2,自引:11,他引:2  
Sulfate reduction occurred from 0–3 cm below the surface of the epilimnetic sediments of three northwestern Ontario lakes, including L.223, which has been experimentally acidified by additions of sulfuric acid. Shallow water sites were conducive to SO4 2– reduction because decomposition in these predominantly sandy sediments caused oxygen concentrations to decrease rapidly within mm below the interface. The occurrence of methanogenesis just below the depth of minimum SO4 2- concentration demonstrated that availability of organic carbon was not a limiting factor for sulphate reduction.Laboratory studies showed that SO4 2- reduction rates in mixed sediments were lower at pH 4 than at pH 6. However, sulfate gradients in sediments indicated that there was no effect of acidification on sulfate reduction in situ. This was probably because microbial H+ consumption in the epilimnetic sediments maintained steep pH gradients below the sediment-water interface. The pH increased from = 5.0 to 6.5 or higher by a depth of 3.0 cm into the sediments.  相似文献   

6.
H2 thresholds, concentrations below which H2 consumption by a microbial group stops, have been associated with microbial respiratory processes such as dechlorination, denitrification, sulfate reduction, and methanogenesis. Researchers have proposed that observed H2 thresholds occur when the available Gibbs free energy is minimal (ΔG ≈ 0) for a specific respiratory reaction. Others suggest that microbial kinetics also may play a role in controlling the thresholds. Here, we comprehensively evaluate H2 thresholds in light of microbial thermodynamic and kinetic principles. We show that a thermodynamic H2 threshold for Methanobacterium bryantii M.o.H. is not controlled by ΔG for methane production from H2 + HCO3. We repeatedly attain a H2 threshold near 0.4 nM, with a range of 0.2–1 nM, and ΔG for methanogenesis from H2 + HCO3 is positive, +5 to +7 kJ/mol-H2, at the threshold in most cases. We postulate that the H2 threshold is controlled by a separate reaction other than methane production. The electrons from H2 oxidation are transferred to an electron sink that is a solid-phase component of the cells. We also show that a kinetic threshold (S min) occurs at a theoretically computed H2 concentration of about 2400 nM at which biomass growth shifts from positive to negative.  相似文献   

7.
CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H2 to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N2-CO2, accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H2 (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 μmol of viologen reduced min-1 mg of protein-1. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H2 in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate.  相似文献   

8.
Hydrogen metabolism was studied in anoxic sediments of the stratified Lake Mendota; using a method which allowed the measurement of in situ H2 concentrations and the headspace-free analysis of turnover of dissolved H2. Addition of sulfate resulted in partial but immediate inhibition of H2-dependent methanogenesis. Sulfate addition did not result in an immediate decrease in the steady state concentration of dissolved H2, nor did it significantly stimulate the rate constant of H2 turnover. Sulfate-induced decrease in dissolved H2 was only observed after prolonged incubation or when endogenous H2 production was stimulated by added glucose. The turnover of the in situ H2 accounted for only 14% of the H2-dependent methanogenesis from bicarbonate. While rates of methanogenesis increased during the season, rates of H2 turnover decreased, accounting for only 2% of the H2-dependent methanogenesis at the end of summer stratification. These observations indicate that increasing proportions of CH4 were formed from H2 being directly transferred in syntrophic methanogenic associations. The rapid inhibition of H2-dependent methanogenesis by exogenous sulfate may be explained at least partially by assuming methanogenic associations in which syntrophic sulfate reducers change their metabolism from fermentative H2 production to sulfate reduction.  相似文献   

9.
We compared the microbial community structures that developed in the biofilm anode of two microbial electrolysis cells fed with ethanol, a fermentable substrate—one where methanogenesis was allowed and another in which it was completely inhibited with 2‐bromoethane sulfonate. We observed a three‐way syntrophy among ethanol fermenters, acetate‐oxidizing anode‐respiring bacteria (ARB), and a H2 scavenger. When methanogenesis was allowed, H2‐oxidizing methanogens were the H2 scavengers, but when methanogenesis was inhibited, homo‐acetogens became a channel for electron flow from H2 to current through acetate. We established the presence of homo‐acetogens by two independent molecular techniques: 16S rRNA gene based pyrosequencing and a clone library from a highly conserved region in the functional gene encoding formyltetrahydrofolate synthetase in homo‐acetogens. Both methods documented the presence of the homo‐acetogenic genus, Acetobacterium, only with methanogenic inhibition. Pyrosequencing also showed a predominance of ethanol‐fermenting bacteria, primarily represented by the genus Pelobacter. The next most abundant group was a diverse community of ARB, and they were followed by H2‐scavenging syntrophic partners that were either H2‐oxidizing methanogens or homo‐acetogens when methanogenesis was suppressed. Thus, the community structure in the biofilm anode and suspension reflected the electron‐flow distribution and H2‐scavenging mechanism. Biotechnol. Bioeng. 2010;105: 69–78. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

11.
Methane oxidation in the water column was investigated at two nearshore marine environments with relatively high concentrations of dissolved methane. In the northern Gulf of Mexico, high methane oxidation rates were observed at the pycnocline, with the highest oxidation rate corresponding to the most negative bacterial 13C values. These low isotopic values occurred during the winter when overall bacterial productivity was low, suggesting that at this time of the year, methanotrophs in the Gulf could make up a significant portion of the overall bacterial assemblage. Although methane oxidation also occurred during more productive times (i.e., summer), the isotopic signal of methane oxidation was not observed in the bacterial biomass because of the higher overall bacterial productivity. The other site, Cape Lookout Bight, NC, is a small marine embayment where methane is produced in the organic-rich sediments. No measurable rates of methane oxidation in the water column occurred, and no anomalously low 13C values of the bacterioplankton were measured. In both environments, methane production and oxidation appear to be spatially coupled, occurring at/near the pycnocline in the northern Gulf of Mexico and at the sediment-water interface at Cape Lookout Bight, NC.  相似文献   

12.
Acetogens share the capacity to convert H2 and CO2 into acetate for energy conservation (ATP synthesis). This reaction is attractive for applications, such as gas fermentation and microbial electrosynthesis. Different H2 partial pressures prevail in these distinctive applications (low concentrations during microbial electrosynthesis [<40 Pa] vs. high concentrations with gas fermentation [>9%]). Strain selection thus requires understanding of how different acetogens perform under different H2 partial pressures. Here, we determined the H2 threshold (H2 partial pressure at which acetogenesis halts) for eight different acetogenic strains under comparable conditions. We found a three orders of magnitude difference between the lowest and highest H2 threshold (6 ± 2 Pa for Sporomusa ovata vs. 1990 ± 67 Pa for Clostridium autoethanogenum), while Acetobacterium strains had intermediate H2 thresholds. We used these H2 thresholds to estimate ATP gains, which ranged from 0.16 to 1.01 mol ATP per mol acetate (S. ovata vs. C. autoethanogenum). The experimental H2 thresholds thus suggest strong differences in the bioenergetics of acetogenic strains and possibly also in their growth yields and kinetics. We conclude that no acetogen is equal and that a good understanding of their differences is essential to select the most optimal strain for different biotechnological applications.  相似文献   

13.
In the absence of H2, Methanococcus spp. utilized pyruvate as an electron donor for methanogenesis. For Methanococcus voltae A3, Methanococcus maripaludis JJ1, and Methanococcus vannielii, typical rates of pyruvate-dependent methanogenesis were 3.4, 2.8, and 3.9 nmol min-1 mg-1 cell dry wt, respectively. These rates were 1–4% of the rates of H2-dependent methanogenesis. For M. voltae, the concentration of pyruvate required for one-half the maximum rate of methanogenesis was 7 mM, and pyruvate-dependent methanogenesis was linear for 3 days. Radiolabeled acetate was formed from [3-14C]pyruvate, and the stoichiometry of pyruvate consumed per acetate produced was 1.12±0.27. The stoichiometry of pyruvate consumed per CH4 produced was 3.64±0.34. These values are close to the expected values of 1 acetate and 4 CH4. Although 10–30% of total cell carbon could be obtained from exogenous pyruvate during growth with H2, pyruvate did not replace the nutritional requirement for acetate in Methanococcus voltae A3 or two acetate auxotrophs of Methanococcus maripaludis, JJ6 and JJ7. These results suggest that pyruvate was not oxidized in the presence of H2. The inability to oxidize pyruvate during H2-dependent methanogenesis would prevent a futile cycle of pyruvate oxidation and biosynthesis during autotrophic growth.  相似文献   

14.
Methanogenic processes can be quantified by stable carbon isotopes, if necessary modeling parameters, especially fractionation factors, are known. Anoxically incubated rice roots are a model system with a dynamic microbial community and thus suitable to investigate principal geochemical processes in anoxic natural systems. Here we applied an inhibitor of acetoclastic methanogenesis (methyl fluoride), calculated the thermodynamics of the involved processes, and analyzed the carbon stable isotope signatures of CO2, CH4, propionate, acetate and the methyl carbon of acetate to characterize the carbon flow during anaerobic degradation of rice roots to the final products CO2 and CH4. Methyl fluoride inhibited acetoclastic methanogenesis and thus allowed to quantify the fractionation factor of CH4 production from H2/CO2. Since our model system was not affected by H2 gradients, the fractionation factor could alternatively be determined from the Gibbs free energies of hydrogenotrophic methanogenesis. The fractionation factor of acetoclastic methanogenesis was also experimentally determined. The data were used for successfully modeling the carbon flow. The model results were in agreement with the measured process data, but were sensitive to even small changes in the fractionation factor of hydrogenotrophic methanogenesis. Our study demonstrates that stable carbon isotope signatures are a proper tool to quantify carbon flow, if fractionation factors are determined precisely.  相似文献   

15.
We developed new techniques to measure dissolved H2 and H2 consumption kinetics in anoxic ecosystems that were not dependent on headspace measurements or gas transfer-limited experimentation. These H2 metabolism parameters were then compared with measured methane production rates, and estimates of H2 production and interspecies H2 transfer were made. The H2 pool sizes were 205 and 31 nM in sewage sludge from an anaerobic digestor and in sediments (24 m) from Lake Mendota, respectively. The H2 turnover rate constants, as determined by using in situ pool sizes and temperatures, were 103 and 31 h−1 for sludge and sediment, respectively. The observed H2 turnover rate accounted for only 5 to 6% of the expected H2-CO2-dependent methanogenesis in these ecosystems. Our results are in general agreement with the results reported previously and are used to support the conclusion that most of the H2-dependent methanogenesis in these ecosystems occurs as a consequence of direct interspecies H2 transfer between juxtapositioned microbial associations within flocs or consortia.  相似文献   

16.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

17.
In nature, H2- and CO2-utilizing methanogenic archaea have to couple the processes of methanogenesis and autotrophic growth under highly variable conditions with respect to the supply and concentration of their energy source, hydrogen. To study the hydrogen-dependent coupling between methanogenesis and growth, Methanothermobacter thermautotrophicus was cultured in a fed-batch fermentor and in a chemostat under different 80% H2-20% CO2 gassing regimens while we continuously monitored the dissolved hydrogen partial pressures (pH2). In the fed-batch system, in which the conditions continuously changed the uptake rates by the growing biomass, the organism displayed a complex and yet defined growth behavior, comprising the consecutive lag, exponential, and linear growth phases. It was found that the in situ hydrogen concentration affected the coupling between methanogenesis and growth in at least two respects. (i) The microorganism could adopt two distinct theoretical maximal growth yields (YCH4 max), notably approximately 3 and 7 g (dry weight) of methane formed mol−1, for growth under low (pH2 < 12 kPa)- and high-hydrogen conditions, respectively. The distinct values can be understood from a theoretical analysis of the process of methanogenesis presented in the supplemental material associated with this study. (ii) The in situ hydrogen concentration affected the “specific maintenance” requirements or, more likely, the degree of proton leakage and proton slippage processes. At low pH2 values, the “specific maintenance” diminished and the specific growth yields approached YCH4 max, indicating that growth and methanogenesis became fully coupled.  相似文献   

18.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

19.
Based on DNA-cloning analysis, the microbial community of a phototrophic sludge producing H2 from an acidified wastewater was composed of 81% of a species resembling Rhodobacter capsulatus (with 99.2% similarity) and two unidentified species of the Bacillus/Clostridium group. The sludge produced a biogas comprising 82 ± 2% H2, 13 ± 2% CO2, 4.5 ± 0.5% N2, and 0.5 ± 0.2% H2S.  相似文献   

20.
Pure cultures of H2/CO2- and formate-utilizing methanogens or mixed consortia of sewage sludge generated some formate from H2/CO2 at H2 partial pressure in the gas phase above 200 kPa. At decreasing H2 partial pressure the formate was taken up again and converted to methane. If methanogenesis was inhibited by bromoethanesulphonic acid (BESA) or a high redox potential (–180 to –200 mV), formate-utilizing methanogens produced high amounts of formate from H2/CO2. No formate was excreted by the species, which could only utilize H2/CO2 for methanogenesis. In contrast, H2 formation from formate was observed in cultures of Methanobacterium thermoformicicum and M. formicicum. Measurable amounts were, however, only formed if its immediate utilization for methane production was inhibited by BESA. In the light of the data on formate formation from H2/CO2 and its re-utilization by all formate-utilizing methanogens, the concept of interspecies formate transfer of Thiele and Zeikus should be reconsidered. In pure cultures of methanogens or complex ecosystems with excess H2, formate formation seemed to serve more as a means of disposal of surplus reducing power than for H2 transfer. Correspondence to: J. Winter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号