首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the presence of glial fibrillary acidic protein (GFAP) in kidney is for the first time demonstrated in cryostat sections and cultures of isolated glomerular explants derived from rat kidneys. In double immunolabelling analysis of adult rat kidney sections using antiserum against GFAP and monoclonal antibody (mAb) against vimentin or desmin, the presence of immunoreactivity for GFAP could be observed in the glomerulus of the kidney and vascular cells situated in the peritubular space which expressed vimentin and desmin. Labelling of the sections with absorbed antiserum against GFAP completely abolished the staining in all these cells. The mAb against GFAP, clone GF12.24 which is known to label GFAP both in neural and non-neural cells, recognised its antigen only in the cells located in glomeruli. The investigations performed on early 2- or 3-day-old cultures from glomerular explants revealed different patterns of staining for GFAP in mesangial cells and podocytes: weak filamentous in mesangial cells and a strong non-filamentous perinuclear pattern in podocytes. Due to prominent perinuclear expression in podocytes GFAP may be considered as a marker of these cells. A different pattern of distribution of immunoreactivity for GFAP in podocytes and mesangial cells might be due to function-related posttranslational modifications of GFAP resulting in assembly or disassembly of GFAP filaments. The different pattern of staining for GFAP in the podocytes and mesangial cells, cells which exert a different influence on the capillaries of the glomeruli, suggests a role for GFAP in regulation of the tension and permeability of vascular walls. Previous investigations and present studies hint at GFAP as being a general marker of perivascular cells.  相似文献   

2.
A number of similarities between astrocytes and hepatic stellate cells (HSC) rose the question whether or not the protective barrier features of blood-tissue interface may be provided by HSC as well. To test this hypothesis, we investigated the presence of metallothionein (MT), a functional marker of blood--brain barrier, in HSC in situ and in cell culture and compared the results with those obtained with astrocytes. The dynamics of MT expression in cultured astrocytes and HSC was investigated by simultaneous labelling of the cells with a monoclonal antibody (MAb MT) against a lysine-containing epitope of the cadmium-induced monomer of MT-I from rat liver and antiserum against glial fibrillary acidic protein (GFAP). Cell activation was estimated by the presence of smooth muscle alpha-actin (SMAA). In immunoblotting, MAb MT recognized monomeric MT protein and proteins in the 30-kDa range; both bands were pronounced in brain and barely visible in liver homogenates. In situ, MAb MT reacted with very few perivascular cells situated in the parenchyma of the liver. Double immunolabelling of brain slices with MAb MT and antiserum against GFAP showed large areas of brain containing cells expressing both MT and GFAP. However, there were also regions in the brain where the cells produced solely GFAP or MT. In liver cell culture, MT was absent from HSC and hepatocytes in early periods of cultivation, during which the cells maintained their original features; however, MT was expressed strongly in HSC during their activation under prolonged culture conditions. Inversely, in astrocytes MT was expressed during early culturing and disappeared from the cells together with SMAA in late culture when GFAP was upregulated. These results suggest that the acquisition of myofibroblastic features by perivascular cells empowers them to establish a protective blood-tissue permeability barrier. In addition, this study shows that, at least in cell culture, an enrichment of perivascular cells in GFAP results in the disappearance of protective functions.  相似文献   

3.
Double-immunolabelling techniques were employed to investigate the distribution of smooth muscle alpha-actin (actin) in glial fibrillary acidic protein (GFAP)-positive cells in rat brain during early postnatal development and maturation and in glial primary culture derived from newborn rat brain. In addition the expression of desmin was studied in the glial primary cultures as a function of the differentiation of the cells. Comparison of the cultured astroglial cells at an early age with hepatic stellate cells derived from CCl4-induced cirrhotic rat liver, revealed features of the astrocytic cytoskeleton characteristic of myofibroblastic cells, i.e., strong expression of both myofibroblastic markers, actin and desmin. In astroglial cells with an initial morphology reminiscent of fibroblasts the non-filamentous perinuclear immunoreaction of GFAP increased with time at the expense of actin and, partially, desmin. GFAP filaments were spread throughout the cytoplasm of the cells which acquired stellate morphology. The alterations in the morphology of the cells and the distribution and intensity of staining for GFAP and actin during the differentiation of astrocytes in culture were similar to those observed in astrocytes during the maturation of the brain. In astrocytes from a newborn brain as well as in cirrhotic hepatic stellate cells, the area of immunoreaction of GFAP was reduced and confined mainly to the nuclear region. In contrast, the cells expressed actin throughout the cytoplasm. These findings may hint at a similar function of these regionally specialized perivascular myofibroblastic cells in a normal brain and diseased liver and at inverse organ-specific functions which the cells fulfill under non-pathological conditions in vivo.  相似文献   

4.
The colocalization of desmin and glial fibrillary acidic protein (GFAP) in astrocytes was inferred from previous studies demonstrating a unique antigenic composition comprising GFAP, desmin and vimentin in perisinusoidal stellate cells (PSC) of liver which share several features with astrocytes. In the present study the colocalization of GFAP and desmin was investigated by double-immunolabeling experiments in 12-day-old rat astroglial primary cultures with antiserum against GFAP and two commercial monoclonal antibodies against desmin, antibodies of clone DEU-10 and clone DEB-5. These antibodies selectively decorated the perisinusoidal stellate cells (PSC) of liver for which desmin is known to be a marker. The results obtained with astroglial cells demonstrate that both GFAP and desmin are coexpressed in morphologically different types, process-bearing and process-lacking astrocytes. The expression of desmin was apparently more pronounced in process-lacking astrocytes and was considerably lower in process-bearing ones. In process-lacking astrocytes, in contrast to filamentous cytoplasmic staining for GFAP, the immunoreactivity for desmin was non-filamentous and was irregularly spread in the perinuclear cytoplasm of the cells, while in process-bearing astrocytes the pattern of staining for desmin was similar to that of GFAP. The variability in the intensity and pattern of staining for desmin in astrocytes might be due to transitional stages of differentiation for part of the cells. This interpretation was supported by the presence of GFAP in the cells weakly expressing smooth muscle alpha-actin and the absence of GFAP in the cells enriched with microfilaments.  相似文献   

5.
The origin of cobblestone-like polygonal cells (the most numerous in renal glomerular cell culture) remains controversial; they could be either dedifferentiated podocytes or parietal epithelial cells (PECs) of Bowman's capsule. Poor cellular outgrowth from glomeruli devoid of Bowman's capsule (decapsulated glomeruli) hinders podocytes being obtained without contamination of PECs in culture. Since podocytes are easily damaged during the isolation of glomeruli by the conventional sieving method, we devised a gentle isolation method without forced sieving, resulting in substantial numbers of arborized cells growing out from decapsulated glomeruli. The cells were distinctly different from cobblestone-like polygonal cells in their irregular and often arborized shape and extended long cytoplasmic processes that often crossed over adjacent cells. The arborized cells from decapsulated glomeruli showed intense staining for a podocyte-specific marker, podocalyxin, but no staining for markers specific to PECs (pan cadherin), mesangial cells (Thy-1) or endothelial cells (von Willebrand factor, RECA-1), indicating their podocyte origin. Polygonal cells growing out from encapsulated glomeruli were negative for podocalyxin and positive for pan cadherin at the peripheral cell-cell contact. Thus, the cell population from decapsulated glomeruli is distinctly different from that from encapsulated glomeruli, supporting the idea that polygonal cells originate from PECs, although immunocytochemical markers specific to podocytes in vivo such as WT1, synaptopodin, HSP27 and P-31 antigen were expressed significantly in the polygonal cells. Occasionally, large irregular-shaped cells appeared at the periphery of the outgrowths from encapsulated glomeruli. They were similar in shape to the arborized cells from decapsulated glomeruli but were identical in antigenic properties to cobblestone-like polygonal cells and thus may be named "pseudo-arborized cells". We conclude that PECs in culture modulate their phenotype to resemble podocytes.  相似文献   

6.
To further explore that hepatic stellate cell (HSC) activation results in physiological protection against environmental insult, the profile of differentiation of HSC has been examined upon treatment with ellagic acid (EA), a plant-derived antioxidant that shows multiple protective effects during liver disease. Sparse rat liver cell cultures were grown in media containing EA (3, 6, 30 and 100 microg/ml) and, as controls, without EA, and inspected until day 7 in culture. The cells were double-labelled with antibodies against glial fibrillary acidic protein (GFAP) and smooth muscle alpha-actin (SMAA), marker proteins of quiescent and activated HSC, respectively. In EA-free culture conditions, the quiescent (SMAA-/GFAP+) HSC transiently acquired a semi-activated (SMAA+/GFAP+), phenotype and were further transformed into activated (SMAA+/GFAP-), pleomorphic HSC. Up to a concentration of 30 microg/ml, EA induced an early synthesis of SMAA in all HSC and inhibited their morphologic differentiation and individual growth throughout the culture period. At a concentration of 6 microg/ml, EA supported the semi-activated (SMAA+/GFAP+) phenotype of HSC throughout the culture period, whereas treatment with high EA concentrations (30 microg/ml) resulted in an early loss of GFAP expression. In conclusion: (i) the uniform response of HSC to EA by mild activation adds functional significance to cellular features preceding the transformation of HSC to myofibroblasts; (ii) the high sensitivity of HSC to EA treatment suggests their involvement in any mechanisms of protection by this antioxidant; (iii) the maintenance of HSC morphology might be one of the factors playing a role in the prevention or slowing down of liver fibrosis; (iv) because the effects of EA are concentration- and time-dependent, an arbitrary usage of this antioxidant is a matter of potential concern; (v) the various patterns of HSC activation observed might correspond to distinct activities of these cells, which, in turn, might lead to different outcomes of liver fibrosis.  相似文献   

7.
Severe acute respiratory syndrome (SARS) is a systemic disease characterized by both lung pathology and widespread extrapulmonary virus dissemination causing multiple organ injuries. In this regard, renal dysfunction is an ominous sign in patients with SARS. Indeed, clusters of SARS coronavirus (SARS-CoV) particles have been detected in the cytoplasm of renal tubular epithelial cells in postmortem studies, explaining the presence of infectious virus in the urine of SARS patients. In order to investigate the potential SARS-CoV kidney tropism, we have evaluated the susceptibility of human renal cells of tubular and glomerular origin to in vitro SARS-CoV infection. Immortalized cultures of differentiated proximal tubular epithelial cells (PTEC), glomerular mesangial cells (MC), and glomerular epithelial cells (podocytes) were found to express the SARS-CoV receptor angiotensin-converting enzyme 2 on their surface. Productive infection, however, occurred only in PTEC but not in glomerular cells. A transient infection with poor virus production was observed in MC, whereas podocytes were not permissive to SARS-CoV infection. In contrast to the cytopathic infection of the Vero E6 cell line, SARS-CoV did not cause overt cytopathic effects in PTEC or MC. Of interest, PTEC, but not MC, maintained stable levels of SARS-CoV production in serial subcultures, suggesting a persistent state of infection. In this regard, a SARS-CoV variant with increased replication capacity in PTEC was selected after four serial subculture passages. This SARS-CoV variant acquired a single nonconservative amino acid change from glutamic acid (E) to alanine (A) at position 11 in the viral membrane (M) protein. The E11A point mutation was sufficient for enhanced SARS-CoV replication and persistence in PTEC when introduced in a SARS-CoV recombinant infectious clone. These findings indicate that human PTEC may represent a site of SARS-CoV productive and persistent replication favoring the emergence of viral variants with increased replication capacity, at least in these kidney cells.  相似文献   

8.
Tacrolimus is an anticalcineurinic agent with potent immunosuppressive activity that has recently been shown to have the added benefit of reducing proteinuria in membranous nephropathy (MN) patients. However, its potential mechanisms remain unknown. To reveal the mechanism, rat cohorts were administered tacrolimus or vehicle from days 7 to 28 after the induction of passive Heymann nephritis (PHN). PHN induction resulted in heavy proteinuria and increased expression of desmin, a marker of injured podocytes. We also showed that the glomerular expression of angiopoietin-like-4 (Angptl4) was markedly upregulated in PHN rats and human MN followed by an increase in urine Angptl4 excretion. In addition, increased Angptl4 expression may be related to podocyte injury and proteinuria. Furthermore, upregulated Angptl4 expression primarily colocalized with podocytes rather than endothelial or mesangial cells, indicating that podocytes may be the source of Angptl4, which then gradually migrated to the glomerular basement membrane over time. However, tacrolimus treatment markedly reduced glomerular and urinary Angptl4, accompanied by a reduction in the established proteinuria and the promotion of podocyte repair. Additionally, glomerular immune deposits and circulating IgG levels induced by PHN clearly decreased following tacrolimus treatment. In conclusion, this is the first demonstration that the calcineurin inhibitor tacrolimus can reduce Angptl4 in podocytes accompanied by a decrease in established proteinuria and promotion of podocyte repair in MN.  相似文献   

9.
10.
CD38 is a multifunctional protein involving in a number of signalling pathways. Given that the lack of CD38 is considered as a dedifferentiation marker of lymphocytes and other cells, we hypothesized that CD38 and its signalling pathway may participate in the epithelial-to-mesenchymal transition (EMT) process of podocytes and thereby regulates the integrity of glomerular structure and function. Western blot analysis and RT-PCR demonstrated that renal tissue CD38 expression was lacking in CD38(-/-) mice or substantially reduced in renal CD38 shRNA-transfected WT (CD38-shRNA) mice compared to CD38(+/+) littermates. Confocal fluorescent microscopy demonstrated the reduced expression of epithelial markers (P-Cadherin, ZO-1 and podocin) and increased expression of mesenchymal markers (FSP-1, α-SMA and desmin) in the glomeruli of CD38(-/-) and CD38-shRNA mice compared to CD38(+/+) mice. Morphological examinations showed profound injury in the glomeruli of CD38(-/-) or CD38-shRNA mice compared to CD38(+/+) mice. This enhanced glomerular injury in CD38(-/-) or CD38-shRNA mice was accompanied by increased albuminuria and proteinuria. DOCA/high salt treatment further decreased the expression of epithelial markers and increased the abundance of mesenchymal markers, which were accompanied by more increased glomerular damage index and mean arterial pressure in CD38(-/-) and CD38-shRNA mice than CD38(+/+) mice. In vitro studies showed that inhibition of CD38 enhances the EMT in podocytes. In conclusion, our observations reveal that the normal expression of CD38 importantly contributes to the differentiation and function of podocytes and the defect of this gene expression may be a critical mechanism inducing EMT and consequently resulting in glomerular injury and sclerosis.  相似文献   

11.
The composition of intermediate filaments in pericytes was examined by immunofluorescent and immunoelectron microscopic labeling of frozen sections of various chicken microvascular beds in situ. Pericytes in capillaries of cardiac muscle, exocrine pancreas, and kidney (peritubular capillary) were found to contain both desmin and vimentin. In some capillaries where pericytes do not exist, cells apposed to endothelial cells--the Ito cell in the hepatic sinusoid and the reticular cell in the splenic sinusoid--were shown to contain both of the intermediate filament proteins. In contrast, podocytes and mesangial cells around renal glomerular capillaries contained only vimentin. The presence of desmin supports the hypothesis that pericytes may have a contractile apparatus similar to that of vascular smooth muscle cells. Our results also revealed that even in microvascular beds where pericytes are not found, cells having both desmin and vimentin exist next to endothelial cells and may assume similar functions to pericytes.  相似文献   

12.
13.
Podocyte impairment is a key pathogenic even in the initiation and development of glomerular diseases associated with proteinuria. The type 2 diabetic patients is characterized by progressive increases in albuminuria which are associated with the development of characteristic histopathological features. Losartan had a benefit in decreasing albuminuria in type 2 diabetic patients,suggesting that losartan may have another effect other than blockade of the traditional renin–angiotensin system (RAS). However, the mechanism has remained undetermined. Glucose transporter 1 (GLUT1) is the predominant basal glucose transporter. In the kidney, GLUT1 was overexpressed predominantly in glomerular mesangial cells and in small vessels, rather than in podocytes. The increased glomerular GLUT1 mimicked diabetes-induced glomerular GLUT1 expression. In this study, we hypothesized that increased GLUT1 expression induced by angiotensinII (AngII) contributes to the progression of podocytes injury, losartan can block the effect of AngII and protect podocytes via stabilizing the expression of GLUT1, our results strongly suggest that losartan has a direct and protective effect on podocytes. This represents a novel mechanism by which losartan may protect podocyte from apoptotic death and improve podocyte function via stabilizing the expression of GLUT1. This finding underlines the crucial role of GLUT1 in the pathogenesis of podocyte injury and proteinuria.  相似文献   

14.
15.
Circulating mononuclear cells from a patient developing severe aplastic anemia during the course of non-A, non-B hepatitis were found to be virtually entirely composed of in vivo activated suppressor T cells (Ia+T8+). These cells were used to establish a new permanent cell line, termed SMAA, by using phytohemagglutinin, Ebstein-Barr virus-transformed irradiated B cells, allogeneic irradiated peripheral blood mononuclear cells, and recombinant interleukin 2 to investigate the relationship of aplastic anemia-derived circulating T cells to bone marrow failure. SMAA cells, now in continuous culture for more than 9 mo, were shown to inhibit proliferation of purified myeloid progenitors and their differentiation into early and late appearing neutrophil and eosinophil colonies by 90%, whereas monocyte colonies were much less affected. Similarly, growth of erythroid colonies and bursts was almost completely inhibited, as was anti-mu-induced B cell proliferation and lectin-induced T cell proliferation. This inhibition of hematopoiesis was mediated by the release of a soluble factor that was sensitive to acid (pH 2), heat (56 degrees C), and trypsin. Monoclonal and polyclonal antibodies to interferon-gamma could abrogate the inhibitory effects of SMAA supernatant, but more than 10(4) neutralizing U/ml had to be added. The effects of SMAA could be duplicated by adding 10(4) U/ml of purified recombinant interferon-gamma to colony and proliferation assays. The concentration of interferon-gamma in SMAA supernatant was estimated to be greater than 3 X 10(3) National Institutes of Health reference U/ml by immunoradiometric assay. These results demonstrate that some patients with aplastic anemia have circulating T cells that are capable of prolonged in vitro secretion of interferon-gamma causing severe inhibition of in vitro hematopoiesis, and these cells can be expanded into permanent lines for studies on their regulatory properties.  相似文献   

16.
Previous in vitro studies indicated that hepatic stellate cells (HSC) and rat liver myofibroblasts (rMF) have to be regarded as different cell populations of the myofibroblastic lineage with fibrogenic potential. Employing the discrimination features defined by these studies the localization of HSC and rMF was analyzed in diseased livers. Normal and acutely as well as chronically carbon tetrachloride-injured livers were analyzed by immunohistochemistry and by in situ hybridization. In normal livers HSC [desmin/glial fibrillary acid protein (GFAP)-positive cells] were distributed in the hepatic parenchyma, while rMF (desmin/smooth muscle alpha actin-positive, GFAP-negative cells colocalized with fibulin-2) were located in the portal field, the walls of central veins, and only occasionally in the parenchyma. Acute liver injury was characterized almost exclusively by an increase in the number of HSC, while the amount of rMF was nearly unchanged. In early stages of fibrosis, HSC and rMF were detected within the developing scars. In advanced stages of fibrosis, HSC were mainly present at the scar–parenchymal interface, while rMF accounted for the majority of the cells located within the scar. At every stage of fibrogenesis, rMF, in contrast to HSC, were only occasionally detected in the hepatic parenchyma. HSC and rMF are present in normal and diseased livers in distinct compartments and respond differentially to tissue injury. Acute liver injury is followed by an almost exclusive increase in the number of HSC, while in chronically injured livers not only HSC but also rMF are involved in scar formation. Accepted: 16 September 1999  相似文献   

17.
In some capillary beds, pericytes regulate endothelial growth. Capillaries with high filtration capacity, such as those in renal glomeruli, lack pericytes. Glomerular endothelium lies adjacent to visceral epithelial cells (podocytes) that are anchored to and cover the anti-luminal surface of the basement membrane. We have tested the hypothesis that podocytes can function as endothelial supporting cells. Endothelial cells were outgrown from circulating endothelial progenitors of normal subjects and were extensively characterized. These blood outgrowth endothelial cells (BOECs) expressed endothelial markers, lacked stem cell markers, and expressed the angiopoietin-1 receptor, Tie-2, and the vascular endothelial growth factor (VEGF) receptor, Flk-1. Differentiated podocytes in culture expressed and secreted VEGF, which was upregulated 4.5-fold by high glucose. In complete medium, BOECs formed thin cell-cell connections and multicellular tubes on Matrigel, the in vitro correlate of angiogenesis. This was impaired in deficient media but rescued by co-incubation with Transwell Anopore inserts containing differentiated podocytes. To assess whether VEGF was the major podocyte-derived signal that rescued BOEC angiogenesis, we examined angiogenesis of control and Flk-1-deficient BOECs. Co-incubation with podocytes or addition of recombinant VEGF each rescued angiogenesis in control BOECs, but both failed to support maintenance and angiogenesis in Flk-1-deficient BOECs. Finally, co-culture with podocytes increased BOEC-proliferation. In concert, these findings suggest a model in which glomerular visceral epithelial cells function as pericyte-like endothelial supporting cells. Podocyte-derived VEGF is a required and sufficient regulator of vascular endothelial maintenance, and its upregulation in podocytes by high glucose may be the mechanism for the increased glomerular angiogenesis that is observed in vivo in early diabetic glomerular injury. These studies were supported by grants from the National Institutes of Health (NIH-NIDDK 63360) and the Juvenile Diabetes Research Foundation (JDRF-1-2004-78).  相似文献   

18.
Hypoxia can cause severe tubulointerstitial injury and peritubular capillary loss. However, hypoxia-induced injury in glomerular capillaries is far milder than tubulointerstitium, but the reason for this difference is unclear. We hypothesized that the phenomenon is due to the protective crosstalk among intrinsic glomerular cells. To mimic the microenvironment and investigate the crosstalk process temporally, we established co-culture models of glomerular endothelial cells (GEnCs) with podocytes or with mesangial cells. We found that podocytes rather than mesangial cells prevented GEnCs from injury and hypoxia-induced apoptosis and promoted migration and angiogenesis of GEnCs under hypoxic conditions. We then identified that increased activation of the hypoxia inducible factor 1α (HIF-1α) pathway as the major mechanism enabling podocytes to protect GEnCs against hypoxia. HIF-1α stabilization during hypoxia is known to be dependent on SUMO-specific protease 1 (SENP1)-mediated deSUMOylate modifications. Therefore, we further targeted deSUMOylation, regulated by SENP1, by short hairpin RNA (shRNA) knockdown of SENP1 mRNA in vitro and measured expression of HIF-1α and its downstream gene VEGF in hypoxic podocytes. Our results showed that SENP1 was essential for HIF-1α deSUMOylation in podocytes. The blockade of deSUMOylation by SENP1 shRNA successfully abolished the activation of HIF-1α signaling and consequently suppressed the protective effects of podocytes on GEnCs. In conclusion, we demonstrate for the first time that hypoxia may promote HIF-1α stabilization and activation by increasing SENP1 expression in podocytes, which induce GEnCs survival and angiogenesis to resist hypoxia. Thus, deSUMOylation of HIF-1α signaling is a potentially novel therapeutic target for treating hypoxic renal disorders.  相似文献   

19.
Emerging evidence has suggested that podocytes undergo epithelial-mesenchymal transition (EMT) in diabetic nephropathy (DN). Connective tissue growth factor (CTGF) and integrin-linked kinase (ILK) are involved in the progression of DN. However, the underlying mechanisms of EMT are not well understood. The study aimed to investigate the roles of CTGF and ILK in high glucose-induced phenotypic alterations of podocytes and determine whether ILK signaling is downstream of CTGF. The epithelial marker of nephrin and the mesenchymal marker of desmin were investigated by real-time RT-PCR and Western blotting. The results demonstrated that podocytes displayed a spreading, arborized morphology in normal glucose, whereas they had a cobblestone morphology in high glucose conditions, accompanied by decreased nephrin expression and increased desmin expression, suggesting podocytes underwent EMT. In response to high glucose, CTGF and ILK expression in podocytes were increased in a dose- and time-dependent manner, whereas the increase did not occur in the osmotic control. Furthermore, the inhibition of CTGF with anti-CTGF antibody prevented the phenotypic transition, as demonstrated by the preservation of epithelial morphology, the suppression of high glucose-induced desmin overexpression and the restoration of nephrin. Of note, the upregulation of ILK induced by high glucose was partially blocked by the inhibition of CTGF. In summary, these findings suggested that CTGF and ILK were involved in high glucose-induced phenotypic alterations of podocytes. ILK acted as a downstream kinase of CTGF and high glucose-induced ILK expression might occur through CTGF-dependent and -independent pathways.  相似文献   

20.
NADPH oxidase-derived reactive oxygen species (ROS) have been reported to activate NLRP3 inflammasomes resulting in podocyte and glomerular injury during hyperhomocysteinemia (hHcys). However, the mechanism by which the inflammasome senses ROS is still unknown in podocytes upon hHcys stimulation. The current study explored whether thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the antioxidant thioredoxin and ROS sensor, mediates hHcys-induced NLRP3 inflammasome activation and consequent glomerular injury. In cultured podocytes, size exclusion chromatography and confocal microscopy showed that inhibition of TXNIP by siRNA or verapamil prevented Hcys-induced TXNIP protein recruitment to form NLRP3 inflammasomes and abolished Hcys-induced increases in caspase-1 activity and IL-1β production. TXNIP inhibition protected podocytes from injury as shown by normal expression levels of podocyte markers, podocin and desmin. In vivo, adult C57BL/6J male mice were fed a folate-free diet for 4 weeks to induce hHcys, and TXNIP was inhibited by verapamil (1 mg/ml in drinking water) or by local microbubble-ultrasound TXNIP shRNA transfection. Evidenced by immunofluorescence and co-immunoprecipitation studies, glomerular inflammasome formation and TXNIP binding to NLRP3 were markedly increased in mice with hHcys but not in TXNIP shRNA-transfected mice or those receiving verapamil. Furthermore, TXNIP inhibition significantly reduced caspase-1 activity and IL-1β production in glomeruli of mice with hHcys. Correspondingly, TXNIP shRNA transfection and verapamil attenuated hHcys-induced proteinuria, albuminuria, glomerular damage, and podocyte injury. In conclusion, our results demonstrate that TXNIP binding to NLRP3 is a key signaling mechanism necessary for hHcys-induced NLRP3 inflammasome formation and activation and subsequent glomerular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号