首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

2.
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranes in vivo. The unicellular cyanobacterium Synechococcus sp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. In Synechococcus 7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 x 10(-10) cm(2) s(-1) at 30 degrees C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexes in vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.  相似文献   

3.
The transfer of light energy from phycobilisomes (PBS) to photosystem II (PSII) reaction centers is vital for photosynthesis in cyanobacteria and red algae. To investigate the relationship between PBS and PSII and to optimize the energy transfer efficiency from PBS to PSII, isolation of the PBS-PSII supercomplex is necessary. SPC (sucrose/phosphate/citrate) is a conventional buffer for isolating PBS-PSII supercomplex in cyanobacteria. However, the energy transfer occurring in the supercomplex is poor. Here, we developed a new buffer named SGB by adding 1M glycinebetaine and additional sucrose to SPC buffer. Compared to SPC, the newly developed SGB buffer greatly enhanced the associated populations of PBS with thylakoid membranes and PSII and further improved the energy transfer efficiency from PBS to PSII reaction centers in cyanobacteria in vitro. Therefore, we conclude that SGB is an excellent buffer for isolating the PBS-PSII supercomplex and for enhancing the energy transfer efficiency from PBS to PSII reaction centers in cyanobacteria in vitro.  相似文献   

4.
Cyanobacteria use chlorophyll and phycobiliproteins to harvest light. The resulting excitation energy is delivered to reaction centers (RCs), where photochemistry starts. The relative amounts of excitation energy arriving at the RCs of photosystem I (PSI) and II (PSII) depend on the spectral composition of the light. To balance the excitations in both photosystems, cyanobacteria perform state transitions to equilibrate the excitation energy. They go to state I if PSI is preferentially excited, for example after illumination with blue light (light I), and to state II after illumination with green-orange light (light II) or after dark adaptation. In this study, we performed 77-K time-resolved fluorescence spectroscopy on wild-type Synechococcus elongatus 7942 cells to measure how state transitions affect excitation energy transfer to PSI and PSII in different light conditions and to test the various models that have been proposed in literature. The time-resolved spectra show that the PSII core is quenched in state II and that this is not due to a change in excitation energy transfer from PSII to PSI (spill-over), either direct or indirect via phycobilisomes.  相似文献   

5.
State transitions in cyanobacteria regulate the relative energy transfer from phycobilisome to photosystem I and II. Although it has been shown that phycobilisome mobility is essential for phycobilisome-dependent state transitions, the biochemical mechanism is not known. Previously we reported that two distinct forms of phycobilisome are assembled with different CpcG copies, which have been referred to as “rod-core linker,” in a cyanobacterium Synechocystis sp. PCC 6803. CpcG2-phycobilisome is devoid of a typical central core, while CpcG1-phycobilisome is equivalent to the conventional phycobilisome supercomplex. Here, we demonstrated that the cpcG1 disruptant has a severe specific defect in the phycobilisome-dependent state transition. However, fluorescence recovery after photobleaching measurements showed no obvious difference in phycobilisome mobility between the wild type and the cpcG1 disruptant. This suggests that both CpcG1 and CpcG2 phycobilisomes have an unstable interaction with the reaction centres. However, only CpcG1 phycobilisomes are involved in state transitions. This suggests that state transitions require the phycobilisome core.  相似文献   

6.
Nonphotochemical quenching (NPQ) of excitation energy is a well-established phenomenon in green plants, where it serves to protect the photosynthetic apparatus from photodamage under excess illumination. The induction of NPQ involves a change in the function of the light-harvesting apparatus, with the formation of quenching centers that convert excitation energy into heat. Recently, a comparable phenomenon was demonstrated in cyanobacteria grown under iron-starvation. Under these conditions, an additional integral membrane chlorophyll-protein, IsiA, is synthesized, and it is therefore likely that IsiA is required for NPQ in cyanobacteria. We have previously used fluorescence recovery after photobleaching to show that phycobilisomes diffuse rapidly on the membrane surface, but are immobilized when cells are immersed in high-osmotic strength buffers, apparently because the interaction between phycobilisomes and reaction centers is stabilized. Here, we show that when cells of the cyanobacterium Synechocystis sp. PCC 6803 subjected to prolonged iron-deprivation are immersed in 1 m phosphate buffer, NPQ can still be induced as normal by high light. However, the formation of the quenched state is irreversible under these conditions, suggesting that it involves the coupling of free phycobilisomes to an integral-membrane complex, an interaction that is stabilized by 1 m phosphate. Fluorescence spectra are consistent with this idea. Fluorescence recovery after photobleaching measurements confirm that the induction of NPQ in the presence of 1 m phosphate is accompanied by immobilization of the phycobilisomes. We propose as a working hypothesis that a major component of the fluorescence quenching observed in iron-starved cyanobacteria arises from the coupling of free phycobilisomes to IsiA.  相似文献   

7.
Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this article we discuss the phycobilisome, the light-harvesting apparatus of cyanobacteria and red algae. Unlike most light-harvesting antenna complexes, the phycobilisome is not an integral membrane complex but is attached to the surface of the photosynthetic membranes. It is composed of both the pigmented phycobiliproteins and the nonpigmented linker polypeptides; the former are important for absorbing light energy, while the latter are important for stability and assembly of the complex. The composition of the phycobilisome is very sensitive to a number of different environmental factors. Some of the filamentous cyanobacteria can alter the composition of the phycobilisome in response to the prevalent wavelengths of light in the environment. This process, called complementary chromatic adaptation, allows these organisms to efficiently utilize available light energy to drive photosynthetic electron transport and CO2 fixation. Under conditions of macronutrient limitation, many cyanobacteria degrade their phycobilisomes in a rapid and orderly fashion. Since the phycobilisome is an abundant component of the cell, its degradation may provide a substantial amount of nitrogen to nitrogen-limited cells. Furthermore, degradation of the phycobilisome during nutrient-limited growth may prevent photodamage that would occur if the cells were to absorb light under conditions of metabolic arrest. The interplay of various environmental parameters in determining the number of phycobilisomes and their structural characteristics and the ways in which these parameters control phycobilisome biosynthesis are fertile areas for investigation.  相似文献   

8.
State 1-State 2 transitions ('state transitions') are a rapid physiological adaptation mechanism that adjusts the way absorbed light energy is distributed between photosystem I and photosystem II. They occur in both green plants and cyanobacteria, although the light-harvesting complexes involved are very different. Which aspects of the mechanism are conserved in green plants and cyanobacteria and which may be different, are discussed. It is shown that phycobilisome mobility is necessary for state transitions in cyanobacteria. A conserved cyanobacterial gene (rpaC) that plays a very specific role in state transitions has been identified. There is still debate about the physiological role of state transitions. Comparison of the growth properties of the rpaC deletion mutant with the wild-type gives us a way of directly addressing the question. It was found that state transitions are physiologically important only at very low light intensities: they play no role in protection from photoinhibition. Thus state transitions are a way to maximize the efficiency of light-harvesting at low light intensities.  相似文献   

9.
Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.  相似文献   

10.
Cyanobacteria are oxygenic phototrophic prokaryotes and are considered to be the ancestors of chloroplasts. Their photosynthetic machinery is functionally equivalent in terms of primary photochemistry and photosynthetic electron transport. Fluorescence measurements and other techniques indicate that cyanobacteria, like plants, are capable of redirecting pathways of excitation energy transfer from light harvesting antennae to both photosystems. Cyanobacterial cells can reach two energetically different states, which are defined as “State 1” (obtained after preferential excitation of photosystem I) and “State 2” (preferential excitation of photosystem II). These states can be distinguished by static and time resolved fluorescence techniques. One of the most important conclusions reached so far is that the presence of both photosystems, as well as certain antenna components, are necessary for state transitions to occur. Spectroscopic evidence suggests that changes in the coupling state of the light harvesting antenna complexes (the phycobilisomes) to both photosystems occur during state transitions. The finding that the phycobilisome complexes are highly mobile on the surface of the thylakoid membrane (the mode of interaction with the thylakoid membrane is essentially unknown), has led to the proposal that they are in dynamic equilibrium with both photosystems and regulation of energy transfer is mediated by changes in affinity for either photosystem.  相似文献   

11.
Cyanobacterial phycobilisomes   总被引:2,自引:0,他引:2  
Cyanobacterial phycobilisomes harvest light and cause energy migration usually toward photosystem II reaction centers. Energy transfer from phycobilisomes directly to photosystem I may occur under certain light conditions. The phycobilisomes are highly organized complexes of various biliproteins and linker polypeptides. Phycobilisomes are composed of rods and a core. The biliproteins have their bilins (chromophores) arranged to produce rapid and directional energy migration through the phycobilisomes and to chlorophyll a in the thylakoid membrane. The modulation of the energy levels of the four chemically different bilins by a variety of influences produces more efficient light harvesting and energy migration. Acclimation of cyanobacterial phycobilisomes to growth light by complementary chromatic adaptation is a complex process that changes the ratio of phycocyanin to phycoerythrin in rods of certain phycobilisomes to improve light harvesting in changing habitats. The linkers govern the assembly of the biliproteins into phycobilisomes, and, even if colorless, in certain cases they have been shown to improve the energy migration process. The Lcm polypeptide has several functions, including the linker function of determining the organization of the phycobilisome cores. Details of how linkers perform their tasks are still topics of interest. The transfer of excitation energy from bilin to bilin is considered, particularly for monomers and trimers of C-phycocyanin, phycoerythrocyanin, and allophycocyanin. Phycobilisomes are one of the ways cyanobacteria thrive in varying and sometimes extreme habitats. Various biliprotein properties perhaps not related to photosynthesis are considered: the photoreversibility of phycoviolobilin, biophysical studies, and biliproteins in evolution. Copyright 1998 Academic Press.  相似文献   

12.
13.
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (LCM) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)–phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.  相似文献   

14.
Chromatic adaptation and the events involved in phycobilisome biosynthesis   总被引:1,自引:0,他引:1  
Abstract. The major light-harvesting complex in cyanobacteria and red algae is the phycobilisome, a macromolecular complex that is attached to the surface of the photosynthetic membranes. The phycobilisome is composed of a number of different chromophoric polypeptides called phycobiliproteins and nonchromophoric polypeptides called linker proteins. Several environmental parameters modulate the synthesis, assembly and degradation of phycobilisome components. In many cyanobacteria, the composition of the phycobilisome can change to accommodate the prevalent wavelengths of light in the environment. This phenomenon is called complementary chromatic adaptation. Organisms that exhibit complementary chromatic adaptation must perceive the wavelengths of light in the environment and transduce the light signals into a sequence of biochemical events that result in altering the activities of genes encoding specific phycobiliprotein and linker polypeptides. Other environmental parameters such as light intensity and nutrient status can also have marked effects on both the number and composition of the phycobilisomes. The major concern of this article is the molecular events involved in chromatic adaptation. Most of the information concerning this process has been gained from studies involving the filamentous cyanobacterium Fremyella diplosiphon . However, also briefly considered are some of the complexities involved in phycobilisome biosynthesis and degradation; they include post-translational modification of phycobilisome polypeptides, the coordinate expression of chromophore and apobiliprotein, the specific degradation of phycobilisomes when cyanobacteria are deprived of macronutrients such as nitrogen, sulphur and phosphorus, and the assembly of the individual phycobilisome components into substructures of the light harvesting complex.  相似文献   

15.
Phycobilisome composition and possible relationship to reaction centers   总被引:2,自引:0,他引:2  
The photosynthetic apparatus was studied in Anacystis nidulans wild type and in a spontaneous pigment mutant 85Y which had improved growth in far-red light (greater than 650 nm). Two phycobiliproteins, C-phycocyanin (lambda max 625) and allophycocyanin (lambda max 650), were present in a molar ratio of approximately 3:1 in the wild type and approximately 0.4:1 in the mutant. Phycobilisomes of wild type cells were larger (57 X 30 nm) than those of the mutant 85Y (28 X 15 nm). In the mutant they seemed to consist primarily of the allophycocyanin core. Fluorescence emission maxima of wild type and mutant 85Y phycobilisomes were at 680 nm (23 degrees C) and 685 nm (-196 degrees C). Excitation maxima of phycobilisomes were at 630 and 650 nm for the wild type and the mutant 85Y, respectively. The phycobilisomes of wild type cells whether grown in white or far-red light had the same size and pigment composition. A typical wild type cell in white light had a thylakoid area of 22.8 microns 2, but in far-red light the area was reduced to 13.5 microns 2, which was close to that of 85Y at 13.6 microns 2. Chlorophyll molecules per cell decreased in far-red light from 1.1 X 10(7) in wild type (white light) to 4.5 X 10(6) in mutant 85Y (far-red). The number of phycobilisomes per cell (approx 2 X 10(4)), calculated from the phycobiliprotein content and phycobilisome size, was about the same in wild type (white light) and mutant 85Y (far-red light), but the number of phycobilisomes per unit area of thylakoid was significantly greater in mutant 85Y than in wild type. The present results suggest that the phycobilisomes are linked with reaction centers and that the PSII complement (photo-system II and phycobilisome) was fully maintained in far-red light.  相似文献   

16.
Nostoc sp. strain MAC cyanobacteria were green in color when grown in white light at 30 degrees C and contained phycobilisomes that had phycoerythrin and phycocyanin in a molar ratio of 1:1. Cells grown for 4 to 5 days in green light at 30 degrees C or white light at 39 degrees C turned brown and contained phycoerythrin and phycocyanin in a molar ratio of greater than 2:1. In addition to the change in pigment composition, phycobilisomes from brown cells were missing a 34.5-kilodalton, rod-associated peptide that was present in green cells. The green light-induced changes were typical of the chromatic adaptation response in cyanobacteria, but the induction of a similar response by growth at 39 degrees C was a new observation. Phycobilisomes isolated in 0.65 M phosphate buffer (pH 7) dissociate when the ionic strength or pH is decreased. Analysis of the dissociation products from Nostoc sp. phycobilisomes suggested that the cells contained two types of rod structures: a phycocyanin-rich structure that contained the 34.5-kilodalton peptide and a larger phycoerythrin-rich complex. Brown Nostoc sp. cells that lacked the 34.5-kilodalton peptide also lacked the phycocyanin-rich rod structures in their phycobilisomes. These changes in phycobilisome structure were indistinguishable between cells cultured at 39 degrees C in white light and those cultured at 30 degrees C in green light. A potential role is discussed for rod heterogeneity in the chromatic adaptation response.  相似文献   

17.
Synechococcus elongatus strain PCC7942 cells were grown in high or low environmental concentrations of inorganic C (high-Ci, low-Ci) and subjected to a light shift from 50 µmol m–2 s–1 to 500 µmol m–2 s–1. We quantified photosynthetic reductant (O2 evolution) and molar cellular contents of phycobilisomes, PSII, PSI, and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through the light shift. Upon the increase in light, small initial relative decreases in phycobilisomes per cell resulted from near cessation of phycobilisome synthesis and their dilution into daughter cells. Thus, allocation of reductant to phycobilisome synthesis dropped fivefold from pre- to post-light shift. The decrease in phycobilisome synthesis liberated enough material and reductant to allow a doubling of Rubisco and up to a sixfold increase in PSII complexes per cell. Low-Ci cells had smaller initial phycobilisome pools and upon increased light; their reallocation of reductant from phycobilisome synthesis may have limited the rate and extent of light acclimation, compared to high-Ci cells. Acclimation to increased light involved large reallocations of C, N, and reductant among different components of the photosynthetic apparatus, but total allocation to the apparatus was fairly stable at ca. 50% of cellular N, and drew 25–50% of reductant from photosynthesis.  相似文献   

18.
State transitions are a low-light acclimation response through which the excitation of Photosystem I (PSI) and Photosystem II (PSII) is balanced; however, our understanding of this process in cyanobacteria remains poor. Here, picosecond fluorescence kinetics was recorded for the cyanobacterium Synechococcus elongatus using fluorescence lifetime imaging microscopy (FLIM), both upon chlorophyll a and phycobilisome (PBS) excitation. Fluorescence kinetics of single cells obtained using FLIM were compared with those of ensembles of cells obtained with time-resolved fluorescence spectroscopy. The global distribution of PSI and PSII and PBSs was mapped making use of their fluorescence kinetics. Both radial and lateral heterogeneity were found in the distribution of the photosystems. State transitions were studied at the level of single cells. FLIM results show that PSII quenching occurs in all cells, irrespective of their state (I or II). In S. elongatus cells, this quenching is enhanced in State II. Furthermore, the decrease of PSII fluorescence in State II was homogeneous throughout the cells, despite the inhomogeneous PSI/PSII ratio. Finally, some disconnected PBSs were resolved in most State II cells. Taken together our data show that PSI is enriched in the inner thylakoid, while state transitions occur homogeneously throughout the cell.

During state transitions, the ratio of quenched and unquenched photosystem II complexes is homogeneously changed in individual cells of the cyanobacterium Synechococcus elongatus.  相似文献   

19.
State transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU induced State 1 and dark-adaptation induced State 2 in both wild-type and mutant cells as determined by 77 K fluorescence emission spectroscopy. Light-induced transitions were observed in the wild-type after preferential excitation of phycocyanin (State 2) or preferential excitation of Chl a (State 1). Light-induced transitions were also observed in the phycobilisome-less mutant after preferential excitation of short-wavelength Chl a (State 2) or carotenoids and long-wavelength Chl a (State 1). We conclude that the mechanism of the light-state transition in cyanobacteria does not require the presence of the phycobilisome. Our results contradict proposed models for the state transition, which require phosphorylation of, and an active role for, the phycobilisome.  相似文献   

20.
In the present work, electron microscopy and single particle averaging was performed to investigate the supramolecular architecture of hemiellipsoidal phycobilisomes from the unicellular red alga Porphyridium cruentum. The dimensions were measured as 60 × 41 × 34 nm (length × width × height) for randomly ordered phycobilisomes, seen under high-light conditions. The hemiellipsoidal phycobilisomes were found to have a relatively flexible conformation. In closely packed semi-crystalline arrays, observed under low-light conditions, the width is reduced to 31 or 35 nm, about twice the width of the phycobilisome of the cyanobacterium Synechocystis sp. PCC 6803. Since the latter size matches the width of dimeric PSII, we suggest that one PBS lines up with one PSII dimer in cyanobacteria. In red algae, a similar 1:1 ratio under low-light conditions may indicate that the red algal phycobilisome is enlarged by a membrane-bound peripheral antenna which is absent in cyanobacteria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ana A. Arteni and Lu-Ning Liu equally contributed to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号