共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Y Seino T Yamamoto G Koh 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1992,200(2):210-213
In order to determine the role of insulin and glucose transporter gene expression in the development of diabetes in obesity, we examined insulin and GLUT2-liver type and GLUT4-muscle-fat type glucose transporter mRNA levels in obese and diabetic rats. Ventromedial hypothalamus-lesioned (VMH), Zucker fatty (ZF), and Wistar fatty (WF) rats were used as models. VMH and ZF rats are most frequently used as models for simple obesity. In contrast, WF rats, which have been established by transferring the fa gene of ZF rats to Wistar Kyoto rats, develop both obesity and diabetes. Pancreatic insulin content of VMH rats at 10 weeks after the operation and of ZF rats at 5 and 14 weeks of age was significantly higher than that of controls. On the other hand, insulin content of WF rats at 5 and 14 weeks of age was not significantly different from that of lean littermates. The insulin mRNA levels of VMH rats were increased progressively and were significantly higher than those in sham-operated animals at 4 and 10 weeks after the operation. In ZF rats, the insulin mRNA levels at 5 and 14 weeks of age were significantly higher than those of their lean littermates. In WF rats, by contrast, the insulin mRNA levels were similar to those of lean littermates at 5 and 14 weeks of age. The insulin mRNA levels of WF rats were about 40% of that of ZF rats at 14 weeks of age. On the other hand, at 14 weeks of age, the GLUT2 mRNA levels of liver were significantly higher in ZF and WF rats than those in their respective littermates, but not at 5 weeks of age. The GLUT4 mRNA levels of skeletal muscle in both ZF and WF rats were not significantly different from those of controls. It is suggested that the inability of WF rats to augment insulin gene expression in response to a large demand for insulin is associated with the occurrence of diabetes, and that the activation of GLUT2 mRNA without the activation of GLUT4 mRNA is common to obesity with and without diabetes. 相似文献
3.
4.
It has been shown previously that the rate of glucose transport in fibroblasts is accelerated by oncoproteins such as v-src, ras, and the transforming protein of feline sarcoma virus. This induction of glucose transport is associated with, and presumably caused by, induction of Hep-G2/rat brain glucose transporter gene expression. To determine the mechanism underlying the induction of glucose transporter gene expression by the v-src oncogene we studied cell lines that overexpress the normal counterpart of the v-src protein (c-src), or various mutants of the c-src protein. In these mutants, the tyrosines at positions 416, 527, or 519, or various combinations of these, have been replaced by phenylalanine by site directed mutagenesis, resulting in mutated c-src proteins that possess varying tyrosine kinase activity and transforming potential. Cells that overexpress the c-src protein show no changes in glucose transporter gene expression. However, when Tyr 527 in the COOH terminus of the c-src protein is replaced with Phe, the tyrosine kinase activity and transforming potential of the protein are increased and the protein acquires a potent ability to increase levels of glucose transporter mRNA and protein, as well as the rate of 2-deoxy-D-glucose uptake. This ability is abolished by the double mutation of Tyr to Phe in positions 416 and 527, which reduces the tyrosine kinase activity of the 527 single mutant. Thus, the ability of src proteins to induce expression of the glucose transport system is linked to the tyrosine kinase activity of the protein.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
6.
7.
Using pregnant rats fed equicaloric liquid diets (AF, and libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed), we have previously shown that maternal alcoholism produces a specific and significant decrease of glucose in the fetal brain, which is accompanied by growth retardation. To further define the mechanisms of ethanol-induced perturbations in fetal fuel supply, we have examined (i) the uptake of 2-deoxyglucose (2-DG) by dissociated brain cells from fetal rats that were exposed to ethanol in utero and (ii) the steady-state levels of the glucose transporter-1 (GT-1) mRNA. A 9% decrease in brain weight (P less than 0.001) and a 54.8% reduction in 2-DG uptake into brain cells (P less than 0.02) were found in offspring of EF mothers compared to the AF group. Brain weight correlated with the rate of 2-DG uptake (P less than 0.05). Northern blot analysis showed a 50% reduction of GT-1 mRNA in EF brain relative to that in the AF and PF groups. We conclude that glucose transport into the brain is an important parameter altered by maternal ethanol ingestion. 相似文献
8.
Liver and muscle-fat type glucose transporter gene expression in obese and diabetic rats 总被引:2,自引:0,他引:2
T Yamamoto H Fukumoto G Koh H Yano K Yasuda K Masuda H Ikeda H Imura Y Seino 《Biochemical and biophysical research communications》1991,175(3):995-1002
In order to investigate the regulation of glucose transporter gene expression in the altered metabolic conditions of obesity and diabetes, we have measured mRNA levels encoding GLUT2 in the liver and GLUT4 in the gastrocnemius muscle from various insulin resistant animal models, including Zucker fatty, Wistar fatty, and streptozocin(STZ)-treated diabetic rats. Northern blot analysis revealed that GLUT2 mRNA levels were significantly (P less than 0.001) elevated in 14 wk Zucker fatty and Wistar fatty rats relative to lean littermates but were similar in these two groups at 5 wk of age. Furthermore, there was significant increase (P less than 0.01) in GLUT2 mRNA levels in STZ diabetic rats at 3 wk after treatment. GLUT4 mRNA levels were not significantly different between control and insulin resistant rats in all animal models. These results indicate that neither hyperinsulinemia nor hyperglycemia affects GLUT4 mRNA levels in the muscle. However, GLUT2 mRNA levels in the liver were elevated in obesity and diabetes, although this regulatory event occurred independently from circulating insulin or glucose concentrations. 相似文献
9.
B J Rollins E D Morrison P Usher J S Flier 《The Journal of biological chemistry》1988,263(32):16523-16526
10.
Growth factors induce neurogenesis in the ciliary body 总被引:3,自引:0,他引:3
The ciliary body of the eye is a nonneural tissue that is derived from the anterior rim of the optic cup, an extension of the neural tube. This tissue normally does not contain neurons and functions to produce components of the aqueous humor. We found that intraocular injections of insulin, EGF, or FGF2 stimulate NPE cells to proliferate and differentiate into neurons. These growth factors had region-specific effects along the radial axis of the ciliary body, with insulin and EGF stimulating proliferation of NPE cells close to the retina, while FGF2 stimulated the proliferation of NPE cells further toward the lens. Similar region-specific effects were observed for accumulations of neurons in the NPE in response to injections of different growth factors. The neurons derived from NPE cells express neurofilament, beta3 tubulin, RA4, calretinin, Islet1, or Hu, and a few produced long axonal projections, several millimeters in length that extend across the ciliary body. Our results suggest that the ciliary body has the capacity to generate retinal neurons, but normally neurogenesis is actively inhibited. 相似文献
11.
J M Stephens G J Bagby P H Pekala R E Shepherd J J Spitzer C H Lang 《Biochemical and biophysical research communications》1992,183(2):417-422
To understand the molecular mechanisms responsible for the sepsis-induced enhanced glucose uptake, we have examined the levels of GLUT4 and GLUT1 mRNA and protein in the adipose tissue of septic animals. Rats were challenged with a nonlethal septic insult where euglycemia was maintained and hexose uptake in adipose tissue was markedly elevated. Northern blot analysis of total RNA isolated from epididymal fat pads indicated differential regulation of the mRNA content for the two transporters: GLUT1 mRNA was increased 2.6 to 4.6-fold, while GLUT4 mRNA was decreased by 2.5 to 2.9-fold. Despite the difference in mRNA levels, both GLUT1 and GLUT4 protein were down regulated in plasma membranes (40% and 25%, respectively) and microsomal membranes (42% and 25%, respectively) of the septic animals. The increased glucose uptake cannot be explained by the membrane content of GLUT1 and GLUT4 protein. Thus, during hypermetabolic sepsis, increased glucose utilization by adipose tissue is dependent on alternative processes. 相似文献
12.
13.
We have investigated the effects of forskolin on enterocyte membrane expression of the glucose transporters, SGLT1 and GLUT2, which are thought to be the main entry and efflux pathways for glucose, respectively. Forskolin treatment increased SGLT1 but decreased GLUT2 expression in mid and lower villus enterocytes. No change in transporter expression was noted in upper villus cells. Likewise, cyclic AMP levels were raised in mid and lower but not upper villus cells. The implications of these data for glucose transport are discussed. 相似文献
14.
Mark WilliamsPaul Sharp 《生物化学与生物物理学报:生物膜》2002,1559(2):179-185
We have investigated the effects of forskolin on enterocyte membrane expression of the glucose transporters, SGLT1 and GLUT2, which are thought to be the main entry and efflux pathways for glucose, respectively. Forskolin treatment increased SGLT1 but decreased GLUT2 expression in mid and lower villus enterocytes. No change in transporter expression was noted in upper villus cells. Likewise, cyclic AMP levels were raised in mid and lower but not upper villus cells. The implications of these data for glucose transport are discussed. 相似文献
15.
16.
17.
Ramos AS Chambergo FS Bonaccorsi ED Ferreira AJ Cella N Gombert AK Tonso A El-Dorry H 《Biochemistry》2006,45(26):8184-8192
The filamentous fungus Trichoderma reesei is adapted to nutrient-poor environments, in which it uses extracellular cellulases to obtain glucose from the available cellulose biomass. We have isolated and characterized Trhxt1, a putative glucose transporter gene, as judged by the glucose accumulation phenotype of a DeltaTrhxt1 mutant. This gene is repressed at high glucose concentrations and expressed at micromolar levels and in the absence of glucose. The gene is also induced during the growth of T. reesei on cellulose when the glucose concentration generated from the hydrolysis of cellulose present in the culture medium is in the micromolar range. We also show that oxygen availability controls the expression of the Trxht1 gene. In this regard, the gene is down-regulated by hypoxia and also by the inhibition of the flow of electrons through the respiratory chain using antimycin A. Intriguingly, anoxia but not hypoxia strongly induces the expression of the gene in the presence of an otherwise repressive concentration of glucose. These results indicate that although the absence of repressing concentrations of glucose and an active respiratory chain are required for Trhxt1 expression under normoxic conditions these physiological processes have no effect on the expression of this gene under an anoxic state. Thus, our results highlight the presence of a novel coordinated interaction between oxygen and the regulatory circuit for glucose repression under anoxic conditions. 相似文献
18.
Inhibition of glucose transporter gene expression by antisense nucleic acids in HL-60 leukemia cells. 总被引:2,自引:0,他引:2
Glucose is the basic source of energy for mammalian cells. The energy-independent transport of glucose down its concentration gradient is mediated by the facilitative glucose transporter family (GLUT). It has long been recognised that glucose transporter genes are overexpressed in many human cancer cells, to help provide extra energy for the rapid growth of cancer cells. In the present study, antisense oligonucleotides and plasmid-derived antisense RNA against GLUT-1 gene were synthesized and transfected into human leukemia HL-60 cells to investigate the effect of these antisense nucleic acids on tumour growth. Our results show that antisense nucleic acids inhibited the proliferation of HL-60 cells by 50-60% and the mRNA expression of GLUT-1 gene was suppressed as detected by Northern hybridization. 相似文献
19.
Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst 总被引:9,自引:0,他引:9
Chi MM Pingsterhaus J Carayannopoulos M Moley KH 《The Journal of biological chemistry》2000,275(51):40252-40257
We report that a decrease in facilitative glucose transporter (GLUT1) expression and reduced glucose transport trigger apoptosis in the murine blastocyst. Inhibition of GLUT1 expression either by high glucose conditions or with antisense oligodeoxynucleotides significantly lowers protein expression and function of GLUT1 and as a result induces a high rate of apoptosis at the blastocyst stage. Similar to wild-type mice, embryos from streptozotocin-induced diabetic Bax -/- mice experienced a significant decrease in glucose transport compared with embryos from non-diabetic Bax -/- mice. However, despite this decrease, these blastocysts demonstrate significantly fewer apoptotic nuclei as compared with blastocysts from hyperglycemic wild-type mice. This decrease in preimplantation apoptosis correlates with a decrease in resorptions and malformations among the infants of the hyperglycemic Bax -/- mice versus the Bax +/+ and +/- mice. These findings suggest that hyperglycemia by decreasing glucose transport acts as a cell death signal to trigger a BAX-dependent apoptotic cascade in the murine blastocyst. This work also supports the hypothesis that increased apoptosis at a blastocyst stage because of maternal hyperglycemia may result in loss of key progenitor cells and manifest as a resorption or malformation, two adverse pregnancy outcomes more common in diabetic women. 相似文献
20.
Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis
下载免费PDF全文

Bao WG Guiard B Fang ZA Donnini C Gervais M Passos FM Ferrero I Fukuhara H Bolotin-Fukuhara M 《Eukaryotic cell》2008,7(11):1895-1905