首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Copines are calcium-dependent phospholipid-binding proteins found in many eukaryotic organisms and are thought to be involved in signaling pathways that regulate a wide variety of cellular processes. Copines are characterized by having two C2 domains at the N-terminus accompanied by an A domain at the C-terminus. Six copine genes have been identified in the Dictyostelium genome, cpnA – cpnF.

Results

Independent cell lines expressing CpnA, CpnB, CpnC, CpnE, or CpnF tagged with green fluorescent protein (GFP) were created as tools to study copine protein membrane-binding and localization. In general, the GFP-tagged copine proteins appeared to localize to the cytoplasm in live cells. GFP-tagged CpnB, CpnC, and CpnF were also found in the nucleus. When cells were fixed or when live cells were treated with calcium ionophore, the GFP-tagged copine proteins were found associated with the plasma membrane and vesicular organelles. When starved Dictyostelium cells were stimulated with cAMP, which causes a transitory increase in calcium concentration, all of the copines translocated to the plasma membrane, but with varying magnitudes and on and off times, suggesting each of the copines has distinct calcium-sensitivities and/or membrane-binding properties. In vitro membrane binding assays showed that all of the GFP-tagged copines pelleted with cellular membranes in the presence of calcium; yet, each copine displayed distinct calcium-independent membrane-binding in the absence of calcium. A lipid overlay assay with purified GFP-tagged copine proteins was used to screen for specific phospholipid-binding targets. Similar to other proteins that contain C2 domains, GFP-tagged copines bound to a variety of acidic phospholipids. CpnA, CpnB, and CpnE bound strongly to PS, PI(4)P, and PI(4,5)P2, while CpnC and CpnF bound strongly to PI(4)P.

Conclusions

Our studies show that the Dictyostelium copines are soluble cytoplasmic and nuclear proteins that have the ability to bind intracellular membranes. Moreover, copines display different membrane-binding properties suggesting they play distinct roles in the cell. The transient translocation of copines to the plasma membrane in response to cAMP suggests copines may play a specific role in chemotaxis signaling.
  相似文献   

2.
The transduction of signals across the plasma membrane of cells after receptor activation frequently involves the assembly of interacting protein molecules on the cytoplasmic face of the membrane. However, the structural organization and dynamics of the formation of such complexes has not been well defined. In this study atomic force microscopy was used to monitor the assemblies formed in vitro by two classes of calcium-dependent, membrane-binding proteins that participate in the formation of signaling complexes on membranes - the annexins and the copines. When applied to supported lipid bilayers composed of 25% brain phosphatidylserine and 75% dioleyl phosphatidylcholine in the presence of 1 mM Ca2+ both human annexin A1 and human copine I bound only to specialized domains that appeared to be 0.5 to 1.0 nm lower than the rest of the bilayer. These domains may be enriched in phosphatidylserine and have a more disordered structure allowing probe penetration. Confinement of the binding of the proteins to these domains may be important in the process of concentrating other signaling proteins bound to the copine or annexin. The binding of the annexin promoted the growth of the domains and created additional binding space for the copine. This may reflect a general ability of annexins to alter membrane structure in such a way that C2 domain-containing proteins like copine can bind. Copine I formed a reticular lattice composed of linear elements approximately 45 nm long on the specialized domains. This lattice might provide a scaffold for the assembly and interaction of copine target proteins in signaling complexes.  相似文献   

3.
4.
5.
Copines are highly conserved proteins with lipid-binding activities found in animals, plants, and protists. They contain two calcium-dependent phospholipid binding C2 domains at the amino terminus and a VWA domain at the carboxyl terminus. The biological roles of most copines are not understood and the biochemical properties required for their functions are largely unknown. The Arabidopsis copine gene BON1/CPN1 is a negative regulator of cell death and defense responses. Here we probed the potential biochemical activities of BON1 through mutagenic studies. We found that mutations of aspartates in the C2 domains did not alter plasma membrane localization but compromised BON1 activity. Mutation at putative myristoylation residue glycine 2 altered plasma membrane localization of BON1 and rendered BON1 inactive. Mass spectrometry analysis of BON1 further suggests that the N-peptide of BON1 is modified. Furthermore, mutations that affect the interaction between BON1 and its functional partner BAP1 abolished BON1 function. This analysis reveals an unanticipated regulation of copine protein localization and function by calcium and lipid modification and suggests an important role in protein-protein interaction for the VWA domain of copines.  相似文献   

6.
7.

Background  

Copines are calcium-dependent phospholipid-binding proteins found in diverse eukaryotic organisms. We are studying the function of copines in Dictyostelium discoideum, a single-celled amoeba that undergoes cell differentiation and morphogenesis to form multicellular fruiting bodies when placed in starvation conditions. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to complete the developmental cycle, arresting at the slug stage. The aim of this study is to further characterize the developmental defect of the cpnA- cells.  相似文献   

8.
Copines are calcium-dependent membrane-binding proteins found in many eukaryotic organisms. We are studying the function of copines using the model organism, Dictyostelium discoideum. When under starvation conditions, Dictyostelium cells aggregate into mounds that become migrating slugs, which can move toward light and heat before culminating into a fruiting body. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to form fruiting bodies and instead arrest at the slug stage. In this study, we compared the slug behavior of cells lacking the cpnA gene to the slug behavior of wild-type cells. The slugs formed by cpnA- cells were much larger than wild-type slugs and exhibited no phototaxis and negative thermotaxis in the same conditions that wild-type slugs exhibited positive phototaxis and thermotaxis. Mixing as little as 5% wild-type cells with cpnA- cells rescued the phototaxis and thermotaxis defects, suggesting that CpnA plays a specific role in the regulation of the production and/or release of a signaling molecule. Reducing extracellular levels of ammonia also partially rescued the phototaxis and thermotaxis defects of cpnA- slugs, suggesting that CpnA may have a specific role in regulating ammonia signaling. Expressing the lacZ gene under the cpnA promoter in wild-type cells indicated cpnA is preferentially expressed in the prestalk cells found in the anterior part of the slug, which include the cells at the tip of the slug that regulate phototaxis, thermotaxis, and the initiation of culmination into fruiting bodies. Our results suggest that CpnA plays a role in the regulation of the signaling pathways, including ammonia signaling, necessary for sensing and/or orienting toward light and heat in the prestalk cells of the Dictyostelium slug.  相似文献   

9.
Liu J  Jambunathan N  McNellis TW 《Planta》2005,221(1):85-94
The copines are a newly identified, widely distributed class of Ca2+-dependent, phospholipid-binding proteins that may be involved in cellular signaling. The copines have a characteristic domain structure: two C2 domains in the N-terminal region and a von Willebrand A (VWA) domain in the C-terminal region. Studies suggest that copines interact with target protein(s) via their VWA domain and recruit the proteins to a membrane location through the activity of the C2 domains. Arabidopsis thaliana (L.) Heynh. plants with loss-of-function mutations in the BONZAI 1/COPINE 1 (BON1/CPN1) gene display aberrant regulation of defense responses, including development of a lesion-mimic phenotype, an accelerated hypersensitive response, and increased resistance to a bacterial and an oomycetous pathogen. The phenotype of mutants in BON1/CPN1 is both humidity- and temperature-sensitive. In this study, we generated transgenic plants expressing either the VWA or the C2 portions of BON1/CPN1 in the wild-type Columbia-0 (Col-0) genetic background. Transgenic plants expressing the BON1/CPN1 C2 domain portion appeared like wild-type plants. However, transgenic plants expressing the BON1/CPN1 VWA domain exhibited a lesion-mimic phenotype that partially phenocopied bon1/cpn1 mutant plants. Our data suggest that BON1/CPN1 VWA domain fragments may interfere with the function of the full-length endogenous BON1/CPN1 protein, possibly by competing with the full-length BON1/CPN1 protein for association with target proteins normally bound to the full-length BON1/CPN1 protein.  相似文献   

10.
The copines are a family of C2- and von Willebrand factor A-domain-containing proteins that have been proposed to respond to increases in intracellular calcium by translocating to the plasma membrane. The copines have been reported to interact with a range of cell signalling and cytoskeletal proteins, which may therefore be targeted to the membrane following increases in cellular calcium. However, neither the function of the copines, nor their actual movement to the plasma membrane, has been fully established in mammalian cells. Here, we show that copines-1, -2, -3, -6 and -7 respond differently to a methacholine-evoked intracellular increase in calcium in human embryonic kidney cell line-293 cells, and that their membrane association requires different levels of intracellular calcium. We demonstrate that two of these copines associate with different intracellular vesicles following calcium entry into cells, and identify a novel conserved amino acid sequence that is required for their membrane translocation in living cells. Our data show that the von Willebrand factor A-domain of the copines modulates their calcium sensitivity and intracellular targeting. Together, these findings suggest a different set of roles for the members of this protein family in mediating calcium-dependent processes in mammalian cells.  相似文献   

11.
The copines are a newly identified class of calcium-dependent, phospholipid binding proteins that are present in a wide range of organisms, including Paramecium, plants, Caenorhabditis elegans, mouse, and human. However, the biological functions of the copines are unknown. Here, we describe a humidity-sensitive copine mutant in Arabidopsis. Under nonpermissive, low-humidity conditions, the cpn1-1 mutant displayed aberrant regulation of cell death that included a lesion mimic phenotype and an accelerated hypersensitive response (HR). However, the HR in cpn1-1 showed no increase in sensitivity to low pathogen titers. Low-humidity-grown cpn1-1 mutants also exhibited morphological abnormalities, increased resistance to virulent strains of Pseudomonas syringae and Peronospora parasitica, and constitutive expression of pathogenesis-related (PR) genes. Growth of cpn1-1 under permissive, high-humidity conditions abolished the increased disease resistance, lesion mimic, and morphological mutant phenotypes but only partially alleviated the accelerated HR and constitutive PR gene expression phenotypes. The disease resistance phenotype of cpn1-1 suggests that the CPN1 gene regulates defense responses. Alternatively, the primary function of CPN1 may be the regulation of plant responses to low humidity, and the effect of the cpn1-1 mutation on disease resistance may be indirect.  相似文献   

12.
ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs.  相似文献   

13.

Background  

Copines are soluble, calcium-dependent membrane binding proteins found in a variety of organisms. Copines are characterized as having two C2 domains at the N-terminal region followed by an "A domain" at the C-terminal region. The "A domain" is similar in sequence to the von Willebrand A (VWA) domain found in integrins. The presence of C2 domains suggests that copines may be involved in cell signaling and/or membrane trafficking pathways.  相似文献   

14.
Copines are calcium-dependent membrane-binding proteins that are highly conserved among protozoa, plants, nematodes and mammals. Although they are implicated in membrane trafficking and signal transduction, the functions of these proteins are not well understood. The Arabidopsis copine gene BON1/CPN1 was previously shown to negatively regulate a disease resistance (R) gene SNC1. Here we report that in Arabidopsis, as in other organisms, there is a family of copine genes, BON1, 2 and 3. Using double and triple mutant combinations we show that these three copine genes have overlapping functions essential for the viability of plants. The loss of function of BON1 combined with that of BON2 or BON3 leads to extensive cell death phenotypes resembling the hypersensitive response (HR) in defense responses. The resulting lethality can be suppressed by mutations in PAD4 or EDS1 which are required for R gene signaling and cell death control. Accession-dependent phenotypes of the mutant combinations suggest that the BON/CPN genes may together repress several R genes other than SNC1. Moreover, the mutant combinations exhibit developmental defects when R-gene-mediated defense responses are largely suppressed in pad4 and eds1 mutants. Thus, the copine family in Arabidopsis may have effects in promoting growth and development in addition to repressing cell death, and these two processes might be intricately intertwined.  相似文献   

15.
16.
The Arabidopsis thaliana genome encodes about 386 proteins with coiled-coil domains of at least 50 amino acids in length. In mammalian systems, many coiled-coil proteins are part of various cytoskeletal networks including intermediate filament protein, actin-binding proteins and MAP (microtubule-associated proteins). Immunological evidence suggests that some of these cytoskeletal proteins, such as lamins, keratins and tropomyosins, may be conserved in Arabidopsis. However, coiled-coil proteins are of low complexity, and thus, traditional sequence comparison algorithms, such as BLAST may not detect homologies. Here, we use the PROPSEARCH algorithm to detect putative coiled-coil cytoskeletal protein homologues in Arabidopsis. This approach reveals putative intermediate filament protein homologues of filensin, lamin and keratin; putative actin-binding homologues of ERM (ezrin/radixin/moesin), periplakin, utrophin, tropomyosin and paramyosin, and putative MAP homologues of restin/CLIP-170 (cytoplasmic linker protein-170). We suggest that the AtFPP (Arabiopsis thaliana filament-like plant protein) and AtMAP70 (Arabidopsis microtubule-associated protein 70) families of coiled-coil proteins may, in fact, be related to lamins and function as intermediate filament proteins.  相似文献   

17.
The c-fes locus encodes a 93-kDa non-receptor protein tyrosine kinase (Fes) that regulates the growth and differentiation of hematopoietic and vascular endothelial cells. Unique to Fes is a long N-terminal sequence with two regions of strong homology to coiled-coil oligomerization domains. We introduced leucine-to-proline substitutions into the coiled coils that were predicted to disrupt the coiled-coil structure. The resulting mutant proteins, together with wild-type Fes, were fused to green fluorescent protein and expressed in Rat-2 fibroblasts. We observed that a point mutation in the first coiled-coil domain (L145P) dramatically increased Fes tyrosine kinase and transforming activities in this cell type. In contrast, a similar point mutation in the second coiled-coil motif (L334P) was without effect. However, combining the L334P and L145P mutations reduced transforming and kinase activities by approximately 50% relative to the levels of activity produced with the L145P mutation alone. To study the effects of the coiled-coil mutations in a biologically relevant context, we expressed the mutant proteins in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent myeloid leukemia cell line TF-1. In this cellular context, the L145P mutation induced GM-CSF independence, cell attachment, and spreading. These effects correlated with a marked increase in L145P protein autophosphorylation relative to that of wild-type Fes. In contrast, the double coiled-coil mutant protein showed greatly reduced kinase and biological activities in TF-1 cells. These data are consistent with a role for the first coiled coil in the negative regulation of kinase activity and a requirement for the second coiled coil in either oligomerization or recruitment of signaling partners. Gel filtration experiments showed that the unique N-terminal region interconverts between monomeric and oligomeric forms. Single point mutations favored oligomerization, while the double point mutant protein eluted essentially as the monomer. These data provide new evidence for coiled-coil-mediated regulation of c-Fes tyrosine kinase activity and signaling, a mechanism unique among tyrosine kinases.  相似文献   

18.
PSD-95/Disc-large/ZO-1 (PDZ) domain-containing proteins play a central role in synaptic organization by their involvement in neurotransmitter receptor clustering and signaling complex assembly. The protein interacting with protein kinase C (PICK1), a synaptic PDZ domain protein that also contains a coiled-coil and acidic domain, binds to several synaptic components including the metabotropic glutamate receptor mGluR7a. Coexpression of PICK1 and mGluR7a in heterologous cells induces coclustering of these two proteins. To examine the role of the different structural motifs of PICK1 in synaptic aggregation of PICK1 and mGluR7a coclustering, several PICK1 mutants were generated to analyze their distribution in transfected hippocampal cultured neurons and to test their ability to induce coclusters with mGluR7a when coexpressed in fibroblast cells. The PDZ and coiled-coil domains are both required, whereas the acidic region plays an inhibitory role in these processes. Our data suggest that synaptic aggregation and receptor coclustering depend on PICK1 binding to a target membrane receptor, e.g. mGluR7a, by a PDZ-mediated interaction and on PICK1 oligomerization through the coiled-coil domain. This study defined three structural signals within PICK1 regulating its synaptic localization and receptor coclustering activity, which could represent molecular substrates involved in synaptic development and plasticity.  相似文献   

19.
GEF-H1 is a guanine nucleotide exchange factor for Rho whose activity is regulated through a cycle of microtubule binding and release. Here we identify a region in the carboxyl terminus of GEF-H1 that is important for suppression of its guanine nucleotide exchange activity by microtubules. This portion of the protein includes a coiled-coil motif, a proline-rich motif that may interact with Src homology 3 domain-containing proteins, and a potential binding site for 14-3-3 proteins. We identify GEF-H1 as a binding target and substrate for p21-activated kinase 1 (PAK1), an effector of Rac and Cdc42 GTPases, using an affinity-based screen and localize a PAK1 phosphorylation site to the inhibitory carboxyl-terminal region of GEF-H1. We show that phosphorylation of GEF-H1 at Ser(885) by PAK1 induces 14-3-3 binding to the exchange factor and relocation of 14-3-3 to microtubules. Phosphorylation of GEF-H1 by PAK may be involved in regulation of GEF-H1 activity and may serve to coordinate Rho-, Rac-, and Cdc42-mediated signaling pathways.  相似文献   

20.
Gene clusters encoding various type III secretion system (T3SS) injectisomes, frequently code downstream of the conserved atpase gene for small hydrophilic proteins whose amino acid sequences display a propensity for intrinsic disorder and coiled-coil formation. These properties were confirmed experimentally for a member of this class, the HrpO protein from the T3SS of Pseudomonas syringae pv phaseolicola: HrpO exhibits high alpha-helical content with coiled-coil characteristics, strikingly low melting temperature, structural properties that are typical for disordered proteins, and a pronounced self-association propensity, most likely via coiled-coil interactions, resulting in heterogeneous populations of quaternary complexes. HrpO interacts in vivo with HrpE, a T3SS protein for which coiled-coil formation is also strongly predicted. Evidence from HrpO analogues from all T3SS families and the flagellum suggests that the extreme flexibility and propensity for coiled-coil interactions of this diverse class of small, intrinsically disordered proteins, whose structures may alter as they bind to their cognate folded protein targets, might be important elements in the establishment of protein-protein interaction networks required for T3SS function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号