首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.  相似文献   

2.
The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30. We found that the conserved alpha-crystallin domain can be divided into N-terminal and C-terminal subdomains that interact strongly with one another. This interaction likely represents the tertiary contacts of the monomer that were visualized in the crystallographic structures of MjHsp16.5 and wheat Hsp16.9. The conserved sHsp monomeric fold is apparently determined by these regions of conserved sequence. We found that the C-terminal portion of the alpha-crystallin domain also interacts with itself in 2-hybrid assays; however, this interaction requires peptide extension into the semiconserved carboxyl tail. This C-terminal association may represent a principal contact site between dimers that contributes to higher-order assembly, as seen for the crystallized sHsps.  相似文献   

3.
Small heat-shock proteins (sHsps) of various origins exist commonly as oligomers and exhibit chaperone-like activities in vitro. Hsp16.3, the sHsp from Mycobacterium tuberculosis, was previously shown to exist as a monodisperse nonamer in solution when analyzed by size-exclusion chromatography and electron cryomicroscropy. This study represents part of our effort to understand the chaperone mechanism of Hsp16.3, focusing on the role of the oligomeric status of the protein. Here, we present evidence to show that the Hsp16.3 nonamer dissociates at elevated temperatures, accompanied by a greatly enhanced chaperone-like activity. Moreover, the chaperone-like activity was increased dramatically when the nonameric structure of Hsp16.3 was disturbed by chemical cross-linking, which impeded the correct reassociation of Hsp16.3 nonamer. These suggest that the dissociation of the nonameric structure is a prerequisite for Hsp16.3 to bind to denaturing substrate proteins. On the other hand, our data obtained by using radiolabeled and non-radiolabeled proteins clearly demonstrated that subunit exchange occurs readily between the Hsp16.3 oligomers, even at a temperature as low as 4 degrees C. In light of all these observations, we propose that Hsp16.3, although it appears to be homogeneous when examined at room temperature, actually undertakes rapid dynamic dissociation/reassociation, with the equilibrium, and thus the chaperone-like activities, regulated mainly by the environmental temperature.  相似文献   

4.
Small heat shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. In vivo, sHsps contribute to thermotolerance. Recent evidence suggests that their function in the cellular chaperone network is to maintain protein homeostasis by complexing a variety of non-native proteins. One of the most characteristic features of sHsps is their organization into large, sphere-like structures commonly consisting of 12 or 24 subunits. Here, we investigated the functional and structural properties of Hsp20.2, an sHsp from Archaeoglobus fulgidus, in comparison to its relative, Hsp16.5 from Methanocaldococcus jannaschii. Hsp20.2 is active in suppressing the aggregation of different model substrates at physiological and heat-stress temperatures. Electron microscopy showed that Hsp20.2 forms two distinct types of octahedral oligomers of slightly different sizes, indicating certain structural flexibility of the oligomeric assembly. By three-dimensional analysis of electron microscopic images of negatively stained specimens, we were able to reconstitute 3D models of the assemblies at a resolution of 19 Å. Under conditions of heat stress, the distribution of the structurally different Hsp20.2 assemblies changed, and this change was correlated with an increased chaperone activity. In analogy to Hsp20.2, Hsp16.5 oligomers displayed structural dynamics and exhibited increased chaperone activity under conditions of heat stress. Thus, temperature-induced conformational regulation of the activity of sHsps may be a general phenomenon in thermophilic archaea.  相似文献   

5.
Small heat shock proteins (sHsps) are molecular chaperones that specifically bind non-native proteins and prevent them from irreversible aggregation. A key trait of sHsps is their existence as dynamic oligomers. Hsp26 from Saccharomyces cerevisiae assembles into a 24mer, which becomes activated under heat shock conditions and forms large, stable substrate complexes. This activation coincides with the destabilization of the oligomer and the appearance of dimers. This and results from other groups led to the generally accepted notion that dissociation might be a requirement for the chaperone mechanism of sHsps. To understand the chaperone mechanism of sHsps it is crucial to analyze the relationship between chaperone activity and stability of the oligomer. We generated an Hsp26 variant, in which a serine residue of the N-terminal domain was replaced by cysteine. This allowed us to covalently crosslink neighboring subunits by disulfide bonds. We show that under reducing conditions the structure and function of this variant are indistinguishable from that of the wild-type protein. However, when the cysteine residues are oxidized, the dissociation into dimers at higher temperatures is no longer observed, yet the chaperone activity remains unaffected. Furthermore, we show that the exchange of subunits between Hsp26 oligomers is significantly slower than substrate aggregation and even inhibited in the presence of disulfide bonds. This demonstrates that the rearrangements necessary for shifting Hsp26 from a low to a high affinity state for binding non-native proteins occur without dissolving the oligomer.  相似文献   

6.
The N-terminal regions, which are highly variable in small heat-shock proteins, were found to be structurally disordered in all the 24 subunits of Methanococcus jannaschii Hsp16.5 oligomer and half of the 12 subunits of wheat Hsp16.9 oligomer. The structural and functional roles of the corresponding region (potentially disordered) in Mycobacterium tuberculosis Hsp16.3, existing as nonamers, were investigated in this work. The data demonstrate that the mutant Hsp16.3 protein with 35 N-terminal residues removed (DeltaN35) existed as trimers/dimers rather than as nonamers, failing to bind the hydrophobic probe (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid) and exhibiting no chaperone-like activity. Nevertheless, another mutant protein with the C-terminal extension (of nine residues) removed, although existing predominantly as dimers, exhibited efficient chaperone-like activity even at room temperatures, indicating that pre-existence as nonamers is not a prerequisite for its chaperone-like activity. Meanwhile, the mutant protein with both the N- and C-terminal ends removed fully exists as a dimer lacking any chaperone-like activity. Furthermore, the N-terminal region alone, either as a synthesized peptide or in fusion protein with glutathione S-transferase, was capable of interacting with denaturing proteins. These observations strongly suggest that the N-terminal region of Hsp16.3 is not only involved in self-oligomerization but also contains the critical site for substrate binding. Such a dual role for the N-terminal region would provide an effective mechanism for the small heat-shock protein to modulate its chaperone-like activity through oligomeric dissociation/reassociation. In addition, this study demonstrated that the wild-type protein was able to form heterononamers with DeltaN35 via subunit exchange at a subunit ratio of 2:1. This implies that the 35 N-terminal residues in three of the nine subunits in the wild-type nonamer are not needed for the assembly of nonamers from trimers and are thus probably structurally disordered.  相似文献   

7.
alphaA-Crystallin, a member of the small heat shock protein (sHsp) family, is a large multimeric protein composed of 30-40 identical subunits. Its quaternary structure is highly dynamic, with subunits capable of freely and rapidly exchanging between oligomers. We report here the development of a fluorescence resonance energy transfer method for measuring structural compatibility between alphaA-crystallin and other proteins. We found that Hsp27 and alphaB-crystallin readily exchanged with fluorescence-labeled alphaA-crystallin, but not with other proteins structurally unrelated to sHsps. Truncation of 19 residues from the N terminus or 10 residues from the C terminus of alphaA-crystallin did not significantly change its subunit organization or exchange rate constant. In contrast, removal of the first 56 or more residues converts alphaA-crystallin into a predominantly small multimeric form consisting of three or four subunits, with a concomitant loss of exchange activity. These findings suggest residues 20-56 are essential for the formation of large oligomers and the exchange of subunits. Similar results were obtained with truncated Hsp27 lacking the first 87 residues. We further showed that the exchange rate is independent of alphaA-crystallin concentration, suggesting subunit dissociation may be the rate-limiting step in the exchange reaction. Our findings reveal a quarternary structure of alphaA-crystallin, consisting of small multimers of alphaA-crystallin subunits in a dynamic equilibrium with the oligomeric complex.  相似文献   

8.
Farnsworth PN  Singh K 《FEBS letters》2000,482(3):175-179
Small heat shock proteins (sHsp) have been implicated in many cell processes involving the dynamics of protein-protein interactions. Two unusual sequences containing self-complementary motifs (SCM) have been identified within the conserved alpha-crystallin domain of sHsps. When two SCMs are aligned in an anti-parallel direction (N to C and C to N), the charged or polar residues form either salt bridges or hydrogen bonds while the non-polar residues participate in hydrophobic interactions. When aligned in reverse order, the residues of these motifs in alpha-crystallin subunits form either hydrophobic and/or polar interactions. Homology based molecular modeling of the C-terminal domain of alpha-crystallin subunits using the crystal structure of MjHSP16.5 suggests that SCM1 and 2 participate in stabilizing secondary structure and subunit interactions. Also there is overwhelming evidence that these motifs are important in the chaperone-like activity of alpha-crystallin subunits. These sequences are conserved and appear to be characteristic of the entire sHsp superfamily. Similar motifs are also present in the Hsp70 family and the immunoglobulin superfamily.  相似文献   

9.
The small heat shock proteins are the ubiquitous proteins found in a wide range of organisms and function as molecular chaperones by binding to the folding intermediates of their substrates. Although the crystal structure of HSP16.5, a small heat shock protein from Methanococcus jannaschii, revealed that it is a hollow sphere composed of 24 identical subunits, its activation mechanism remains unclear. We found out that HSP16.5 is active only at high temperatures and forms a stable complex with substrate in a stoichiometric manner. We also observed that the conformational change of HSP16.5 is correlated with the increasing hydrophobic site and its activation as a molecular chaperone. However, it is revealed that the conformational change is not accompanied with the change of the secondary structure of a subunit, but correlated with the increasing diameter of HSP16.5. Therefore, it is proposed that the activation mechanism of HSP16.5 involves temperature induced conformational change with size increment of the complex resulting in the exposure of hydrophobic substrate-binding site.  相似文献   

10.
sHsps are ubiquitous ATP-independent molecular chaperones, which efficiently prevent the unspecific aggregation of non-native proteins. Here, we described the purification of the small heat shock protein Hsp26 from a Saccharomyces cerevisiae strain harboring a multicopy plasmid carrying HSP26 gene under the control of its native promoter. A 26 kDa protein was purified to apparent homogeneity with a recovery of 74% by a very reproducible three steps procedure consisting of ethanol precipitation, sucrose gradient ultracentrifugation, and heat inactivation of residual contaminants. The purified polypeptide was unequivocally identified as Hsp26 using a specific Hsp26 polyclonal antibody as a probe. The analysis of the purified protein by electron microscopy revealed near spherical particles with a diameter of 12.0 nm (n=57, standard deviation +/-1.6 nm), displaying a dispersion in size ranging from 9.2 to 16.1 nm, identical to Methanococcus jannaschii Hsp16.5 and in the range of the size estimated for yeast Hsp26, in a previous report. Purified yeast Hsp26 was able to suppress 72% of the heat-induced aggregation of citrate synthase at a ratio of 1:1 (Hsp26 24-mer complex to citrate synthase dimer), and 86% of the heat-induced aggregation of lysozyme at a molar ratio of 1:16 (Hsp26 24-mer complex to lysozyme monomer). In conclusion, the Hsp26 protein purified as described here has structure and activity similar to the previously described preparations. As advantages, this new protocol is very reproducible and requires simple apparatuses which are found in all standard biochemistry laboratories.  相似文献   

11.
Hsp26: a temperature-regulated chaperone   总被引:27,自引:0,他引:27       下载免费PDF全文
Small heat shock proteins (sHsps) are a conserved protein family, with members found in all organisms analysed so far. Several sHsps have been shown to exhibit chaperone activity and protect proteins from irreversible aggregation in vitro. Here we show that Hsp26, an sHsp from Saccharomyces cerevisiae, is a temperature-regulated molecular chaperone. Like other sHsps, Hsp26 forms large oligomeric complexes. At heat shock temperatures, however, the 24mer chaperone complex dissociates. Interestingly, chaperone assays performed at different temperatures show that the dissociation of the Hsp26 complex at heat shock temperatures is a prerequisite for efficient chaperone activity. Binding of non-native proteins to dissociated Hsp26 produces large globular assemblies with a structure that appears to be completely reorganized relative to the original Hsp26 oligomers. In this complex one monomer of substrate is bound per Hsp26 dimer. The temperature-dependent dissociation of the large storage form of Hsp26 into a smaller, active species and the subsequent re-association to a defined large chaperone-substrate complex represents a novel mechanism for the functional activation of a molecular chaperone.  相似文献   

12.
We expressed and characterized two sHsps, StHsp19.7 and StHsp14.0, from a thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. StHsp19.7 forms a filamentous structure consisting of spherical particles and lacks molecular chaperone activity. Fractionation of Sulfolobus extracts by size exclusion chromatography with immunoblotting indicates that StHsp19.7 exists as a filamentous structure in vivo. On the other hand, StHsp14.0 exists as a spherical oligomer like other sHsps. It showed molecular chaperone activity to protect thermophilic 3-isopropylmalate dehydrogenase (IPMDH) from thermal aggregation at 87 degrees C. StHsp14.0 formed variable-sized complexes with denatured IPMDH at 90 degrees C. Using StHsp14.0 labeled with fluorescence or biotin probe and magnetic separation, subunit exchanges between complexes were demonstrated. This is the first report on the filament formation of sHsp and also the high molecular chaperone activity of thermophilic archaeal sHsps.  相似文献   

13.
The small heat shock protein 27 (Hsp27 or HSPB1) is an oligomeric molecular chaperone in vitro that is associated with several neuromuscular, neurological, and neoplastic diseases. Although aspects of Hsp27 biology are increasingly well known, understanding of the structural basis for these involvements or of the functional properties of the protein remains limited. As all 11 human small heat shock proteins (sHsps) possess an α-crystallin domain, their varied functional and physiological characteristics must arise from contributions of their nonconserved sequences. To evaluate the role of two such sequences in Hsp27, we have studied three Hsp27 truncation variants to assess the functional contributions of the nonconserved N- and C-terminal sequences. The N-terminal variants Δ1-14 and Δ1-24 exhibit little chaperone activity, somewhat slower but temperature-dependent subunit exchange kinetics, and temperature-independent self-association with formation of smaller oligomers than wild-type Hsp27. The C-terminal truncation variants exhibit chaperone activity at 40 °C but none at 20 °C, limited subunit exchange, and temperature-independent self-association with an oligomer distribution at 40 °C that is very similar to that of wild-type Hsp27. We conclude that more of the N-terminal sequence than simply the WPDF domain is essential in the formation of larger, native-like oligomers after binding of substrate and/or in binding of Hsp27 to unfolding peptides. On the other hand, the intrinsically flexible C-terminal region drives subunit exchange and thermally-induced unfolding, both of which are essential to chaperone activity at low temperature and are linked to the temperature dependence of Hsp27 self-association.  相似文献   

14.
The hyperthermoacidophilic archaeon Sulfolobus shibatae contains group II chaperonins, known as rosettasomes, which are two nine-membered rings composed of three different 60 kDa subunits (TF55 alpha, beta and gamma). We sequenced the gene for the gamma subunit and studied the temperature-dependent changes in alpha, beta and gamma expression, their association into rosettasomes and their phylogenetic relationships. Alpha and beta gene expression was increased by heat shock (30 min, 86 degrees C) and decreased by cold shock (30 min, 60 degrees C). Gamma expression was undetectable at heat shock temperatures and low at normal temperatures (75-79 degrees C), but induced by cold shock. Polyacrylamide gel electrophoresis indicated that in vitro alpha and beta subunits form homo-oligomeric rosettasomes, and mixtures of alpha, beta and gamma form hetero-oligomeric rosettasomes. Transmission electron microscopy revealed that beta homo-oligomeric rosettasomes and all hetero-oligomeric rosettasomes associate into filaments. In vivo rosettasomes were hetero-oligomeric with an average subunit ratio of 1alpha:1beta:0.1gamma in cultures grown at 75 degrees C, a ratio of 1alpha:3beta:1gamma in cultures grown at 60 degrees C and a ratio of 2alpha:3beta:0gamma after 86 degrees C heat shock. Using differential scanning calorimetry, we determined denaturation temperatures (Tm) for alpha, beta and gamma subunits of 95.7 degrees C, 96.7 degrees C and 80.5 degrees C, respectively, and observed that rosettasomes containing gamma were relatively less stable than those with alpha and/or beta only. We propose that, in vivo, the rosettasome structure is determined by the relative abundance of subunits and not by a fixed geometry. Furthermore, phylogenetic analyses indicate that archaeal chaperonin subunits underwent multiple duplication events within species (paralogy). The independent evolution of these paralogues raises the possibility that chaperonins have functionally diversified between species.  相似文献   

15.
16.
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that rescue misfolded proteins from irreversible aggregation during cellular stress. Many such sHsps exist as large polydisperse species in solution, and a rapid dynamic subunit exchange between oligomeric and dissociated forms modulates their function under a variety of stress conditions. Here, we investigated the structural and functional properties of Hsp20 from thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. To provide a framework for investigating the structure-function relationship of Hsp20 and understanding its dynamic nature, we employed several biophysical and biochemical techniques. Our data suggested the existence of a ~24-mer of Hsp20 at room temperature (25 °C) and a higher oligomeric form at higher temperature (50 °C–70 °C) and lower pH (3.0–5.0). To our surprise, we identified a dimeric form of protein as the functional conformation in the presence of aggregating substrate proteins. The hydrophobic microenvironment mainly regulates the oligomeric plasticity of Hsp20, and it plays a key role in the protection of stress-induced protein aggregation. In Sulfolobus sp., Hsp20, despite being a non-secreted protein, has been reported to be present in secretory vesicles and it is still unclear whether it stabilizes substrate proteins or membrane lipids within the secreted vesicles. To address such an issue, we tested the ability of Hsp20 to interact with membrane lipids along with its ability to modulate membrane fluidity. Our data revealed that Hsp20 interacts with membrane lipids via a hydrophobic interaction and it lowers the propensity of in vitro phase transition of bacterial and archaeal lipids.  相似文献   

17.
The Hsp70 protein switches during its functional cycle from an ADP-bound state with a high affinity for substrates to a low-affinity, ATP-bound state, with concomitant release of the client protein. The rate of the chaperone cycle is regulated by co-chaperones such as nucleotide exchange factors that significantly accelerate the ADP/ATP exchange. Mge1p, a mitochondrial matrix protein with homology to bacterial GrpE, serves as the nucleotide exchange factor of mitochondrial Hsp70. Here, we analyze the influence of temperature on the structure and functional properties of Mge1p from the yeast Saccharomyces cerevisiae. Mge1p is a dimer in solution that undergoes a reversible thermal transition at heat-shock temperatures, i.e. above 37 degrees C, that involves protein unfolding and dimer dissociation. The thermally denatured protein is unable to interact stably with mitochondrial Hsp70, and therefore is unable to regulate its ATPase and chaperone cycle. Crosslinking of wild-type mitochondria reveals that Mge1p undergoes the same dimer to monomer temperature-dependent shift, and that the nucleotide exchange factor does not associate with its Hsp70 partner at stress temperatures (i.e. > or =45 degrees C). Once the stress conditions disappear, Mge1p refolds and recovers both structure and functional properties. Therefore, Mge1p can act as a thermosensor for the mitochondrial Hsp70 system, regulating the nucleotide exchange rates under heat shock, as has been described for two bacterial GrpE proteins. The thermosensor activity is conserved in the GrpE-like nucleotide exchange factors although, as discussed here, it is achieved through a different structural mechanism.  相似文献   

18.
Transthyretin (TTR) subunits were labeled with a charge-modifying tag to evaluate the possibility of subunit exchange between tetramers under physiological conditions. Starting with a mixture of two TTR homotetramers, one having all subunits tagged at the N termini and the other composed of untagged subunits, heterotetramer formation as a function of time and temperature was evaluated using ion exchange chromatography. The data indicate that the subunit exchange can occur under native conditions at physiological pH in vitro, albeit slowly. Wild-type TTR exchanges subunits on a timescale of days at 37 degrees C and on a timescale of hours at 4 degrees C. The familial amyloid polyneuropathy-associated variant V30M exchanges subunits at the same rate as wild-type TTR at 4 degrees C but slower and less efficiently at 37 degrees C. Small molecule tetramer stabilizers abolish TTR subunit exchange, supporting a dissociative mechanism.  相似文献   

19.
Liu X  Huang W  Li M  Wu Q 《IUBMB life》2005,57(6):449-454
Two small heat shock proteins (sHsps), Hsp17.8 and Hsp17.1, were identified in the cyanobacterium Anabaena sp. PCC 7120. Recombinant Hsp17.8 and Hsp17.1 were overexpressed in Escherichia coli and characterized here. Hsp17.8 was purified by sequential chromatography on DEAE-Sepharose and Superose 6 10/300 column, and Hsp17.1 was purified by Superose 6 10/300 column in 4M urea. Size exclusion chromatography demonstrated that both purified proteins form large oligomers approximately 420kDa and 410kDa, respectively. Both Hsp17.8 and Hsp17.1 showed chaperone-like activity to protect citrate synthase (CS) from thermal aggregation at 43 degrees C. Furthermore, both proteins were found to form complexes with denatured CS at 45 degrees C. Our study also demonstrated that despite a high degree of sequence homology and similar subunit size, Hsp17.1 showed higher hydrophobicity indicated by 8-anilino-1-naphthalene sulfonate fluorescence and thus greater chaperone-like activity. This is the first report of characterization and comparison of an sHsp system containing two chaperones in cyanobacteria.  相似文献   

20.
There exist two small heat shock proteins (sHsps) in the fission yeast, Schizosaccharomyces pombe (S. pombe), whose expressions are highly induced by heat stress. We have previously expressed, purified, and characterized one of the sHsps, SpHsp16.0. In this study, we examined the other sHsp, SpHsp15.8. It suppressed the thermal aggregation of citrate synthase (CS) from porcine heart and dithiothreitol-induced aggregation of insulin from bovine pancreas with very high efficiency. Almost one SpHsp15.8 subunit was sufficient to protect one protein molecule from aggregation. Like SpHsp16.0, SpHsp15.8 dissociated into small oligomers and then interacted with denatured substrate proteins. SpHsp16.0 exhibited a clear enthalpy change for denaturation occurring over 60 degrees C in differential scanning calorimetry (DSC). However, we could not observe any significant enthalpy change in the DSC of SpHsp15.8. The difference is likely to be caused by the adhesive characteristics of SpHsp15.8. The oligomer dissociation of SpHsp15.8 and SpHsp16.0 and their interactions with denatured substrate proteins were studied by fluorescence polarization analysis (FPA). Both sHsps exhibited a temperature-dependent decrease of fluorescence polarization, which correlates with the dissociation of large oligomers to small oligomers. The dissociation of the SpHsp15.8 oligomer began at about 35 degrees C and proceeded gradually. On the contrary, the SpHsp16.0 oligomer was stable up to approximately 45 degrees C, but then dissociated into small oligomers abruptly at this temperature. Interestingly, SpHsp16.0 is likely to interact with denatured CS in the dissociated state, while SpHsp15.8 is likely to interact with CS in a large complex. These results suggest that S. pombe utilizes two sHsps that function in different manners, probably to cope with a wide range of temperatures and various denatured proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号