首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
P Sanz  D I Meyer 《The EMBO journal》1988,7(11):3553-3557
When affinity-purified proOmpA was diluted out of 8 M urea into a sample of yeast microsomes, it was translocated and processed in the absence of any cytosolic factors; an intact membrane and ATP were the only requirements. The translocation competence of proOmpA was lost, however, during a 15-h incubation at 0 degrees C. The competence was retained when trigger factor and a yeast cytosolic extract were present during incubations at 0 degrees C. The same reactions were carried out with affinity-purified prepro-alpha-factor, and the same results were obtained with the exception that trigger factor was not required. When the various cytosolic factors were replaced with SRP, the addition of yeast microsomes after 15 h resulted in the translocation and processing (and glycosylation) of both proOmpA and prepro-alpha-factor. Pancreatic microsomes were also used in this type of assay, and it was found that proOmpA (but not prepro-alpha-factor) could be translocated when diluted out of urea. In this case, as with yeast microsomes, translocation competence was maintained by SRP. These results show that in addition to a recognition and targeting function, SRP can stabilize the translocation-competent conformation of pre-secretory proteins in vitro for translocation across eukaryotic membranes.  相似文献   

2.
We reconstituted prepro-alpha-factor translocation and signal peptide processing using a yeast microsomal detergent soluble fraction formed into vesicles with soybean phospholipids. Reconstituted translocation required ATP, and was deficient when sec63 and kar2 (BiP) mutant cells were used as a source of membranes. Normal translocation was observed with vesicles reconstituted from a mixture of pure wild-type yeast BiP and a soluble fraction of kar2 mutant membranes. Two other heat-shock cognate (hsc) 70 homologs, yeast cytosolic hsc70 (Ssalp) and E. coli dnaK protein did not replace BiP. Conversely, BiP was not active under conditions where translocation into native ER vesicles required cytosolic hsc70. We conclude that cytosolic hsc70 and BiP serve noninterchangeable roles in polypeptide translocation, possibly because distinct, asymmetrically oriented membrane proteins are required to recruit each protein to opposing surfaces of the ER membrane.  相似文献   

3.
In posttranslational translocation in yeast, completed protein substrates are transported across the endoplasmic reticulum membrane through a translocation channel formed by the Sec complex. We have used photo-cross-linking to investigate interactions of cytosolic proteins with a substrate synthesized in a reticulocyte lysate system, before its posttranslational translocation through the channel in the yeast membrane. Upon termination of translation, the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC) are released from the polypeptide chain, and the full-length substrate interacts with several different cytosolic proteins. At least two distinct complexes exist that contain among other proteins either 70-kD heat shock protein (Hsp70) or tailless complex polypeptide 1 (TCP1) ring complex/chaperonin containing TCP1 (TRiC/CCT), which keep the substrate competent for translocation. None of the cytosolic factors appear to interact specifically with the signal sequence. Dissociation of the cytosolic proteins from the substrate is accelerated to the same extent by the Sec complex and an unspecific GroEL trap, indicating that release occurs spontaneously without the Sec complex playing an active role. Once bound to the Sec complex, the substrate is stripped of all cytosolic proteins, allowing it to subsequently be transported through the membrane channel without the interference of cytosolic binding partners.  相似文献   

4.
The effects of five single-amino-acid substitution mutations within the signal sequence of yeast prepro-alpha-factor were tested in yeast cells. After short pulse-labelings, virtually all of the alpha-factor precursor proteins from a wild-type gene were glycosylated and processed by signal peptidase. In contrast, the signal sequence mutations resulted in the accumulation of mostly unglycosylated prepro-alpha-factor after a short labeling interval, indicating a defect in translocation of the protein into the endoplasmic reticulum. Confirming this interpretation, unglycosylated mutant prepro-alpha-factor in cell extracts was sensitive to proteinase K and therefore in a cytosolic location. The signal sequence mutations reduced the rate of translocation into the endoplasmic reticulum by as much as 25-fold or more. In at least one case, mutant prepro-alpha-factor molecules were translocated almost entirely posttranslationally. Four of the five mutations also reduced the rate of proteolytic processing by signal peptidase in vivo, even though the signal peptide alterations are not located near the cleavage site. This study demonstrates that a single-amino-acid substitution mutation within a eucaryotic signal peptide can affect both translocation and proteolytic processing in vivo and may indicate that the recognition sequences for translocation and processing overlap within the signal peptide.  相似文献   

5.
Hsp70 molecular chaperones and their co-chaperones work together in various cellular compartments to guide the folding of proteins and to aid the translocation of proteins across membranes. Hsp70s stimulate protein folding by binding exposed hydrophobic sequences thereby preventing irreversible aggregation. Hsp40s stimulate the ATPase activity of Hsp70s and target unfolded proteins to Hsp70s. Genetic and biochemical evidence supports a role for cytosolic Hsp70s and Hsp40s in the post-translational translocation of precursor proteins into endoplasmic reticulum and mitochondria. To gain mechanistic insight, we measured the effects of Saccharomyces cerevisiae Ssa1p (Hsp70) and Ydj1p (Hsp40) on the translocation of histidine-tagged prepro-alpha-factor (ppalphaF6H) into microsomes. Radiolabeled ppalphaF6H was affinity purified from wheat germ translation reactions (or Escherichia coli) to remove endogenous chaperones. We demonstrated that either Ssa1p or Ydj1p stimulates post-translational translocation by preventing ppalphaF6H aggregation. The binding and/or hydrolysis of ATP by Ssa1p were required to maintain the translocation competence of ppalphaF6H. To clarify the contributions of membrane-bound and cytosolic Ydj1p, we compared the efficiency of chaperone-dependent translocation into wild-type and Ydj1p-deficient microsomes. Neither soluble nor membrane-bound Ydj1p was essential for post-translational protein translocation. The ability of Ssa1p, Ydj1p, or both chaperones to restore the translocation competence of aggregated ppalphaF6H was negligible.  相似文献   

6.
We have isolated from the yeast Candida maltosa microsomal membranes that are active in the translocation of proteins synthesized in cell-free systems derived from C. maltosa, Saccharomyces cerevisiae or wheat germ. Translocation and core glycosylation of prepro-alpha-factor, a secretory protein, were observed with yeast microsomes added during or after translation. The signal peptide is cleaved off. Cytochrome P-450 from C. maltosa, the first integral membrane protein studied in a yeast system, is also inserted both co- and post-translationally into Candida microsomal membranes. Its insertion into canine microsomes occurs efficiently only in a co-translational manner and is dependent on the function of the signal recognition particle.  相似文献   

7.
We describe an in vitro system with all components derived from the yeast Saccharomyces cerevisiae that can translocate a yeast secretory protein across microsomal membranes. In vitro transcribed prepro-alpha-factor mRNA served to program a membrane-depleted yeast translation system. Translocation and core glycosylation of prepro-alpha-factor were observed when yeast microsomal membranes were added during or after translation. A membrane potential is not required for translocation. However, ATP is required for translocation and nonhydrolyzable analogues of ATP cannot serve as a substitute. These findings suggest that ATP hydrolysis may supply the energy required for translocation of proteins across the endoplasmic reticulum.  相似文献   

8.
We have previously shown that fully synthesized prepro-alpha-factor (pp alpha F), the precursor for the yeast pheromone alpha-factor, can be translocated posttranslationally across yeast rough microsomal (RM) membranes from a soluble, ribosome-free pool. We show here that this is not the case for translocation of pp alpha F across mammalian RM. Rather we found that a small amount of translocation of full-length pp alpha F is observed, but is solely due to polypeptide chains that were still ribosome bound and covalently attached to tRNA, i.e., not terminated. In addition, both signal recognition particle (SRP) and SRP receptor are required, i.e., the same targeting machinery that is normally responsible for the coupling between protein synthesis and translocation. Thus, the molecular requirements for targeting are distinct from posttranslational translocation across yeast RM. As termination is generally regarded as part of translation, the translocation of full-length pp alpha F across mammalian RM does not occur "posttranslationally," albeit independent of elongation. Most other proteins for which posttranslational translocation across mammalian RM was previously claimed fall into the same category in that ribosome attachment as peptidyl-tRNA is required. To clearly separate these two distinct processes, we suggest that the term posttranslational be reserved for those processes that occur in the complete absence of the translational machinery. We propose the term "ribosome-coupled translocation" for the events described here.  相似文献   

9.
In vitro, efficient translocation and glycosylation of the precursor of yeast alpha-factor can take place post-translationally. This property of prepro-alpha-factor appears to be unique as it could not be extended to other yeast protein precursors such as preinvertase or preprocarboxypeptidase Y. In order to determine if specific domains of prepro-alpha-factor were involved in post-translational translocation, we carried out a series of experiments in which major domains were either deleted or fused onto reporter proteins. Fusion of various domains of prepro-alpha-factor onto the reporter protein alpha-globin did not allow post-translational translocation to occur in the yeast in vitro system. Prepro-alpha-factor retained its ability to be post-translationally translocated when parts or all of the pro region were deleted. Removal of the C-terminal repeats containing mature alpha-factor had the most profound influence as post-translational translocation decreased in proportion to the number of repeats deleted. Taken together, these results suggest that efficient post-translational translocation requires a signal sequence and the four C-terminal repeats. There does not however, appear to be specific information contained within the C-terminus, as their presence in fusion did not enable the post-translational translocation of reporter proteins. Lastly, the ability to post-translationally translocate radiochemically pure prepro-alpha-factor that had been isolated by immuno-affinity chromatography required the addition of a yeast lysate fraction. Moreover, post-translational translocation is a function of the microsomal membrane of yeast microsomes and not of a factor peculiar to the yeast lysate, as reticulocyte lysate supported this as well.  相似文献   

10.
《The Journal of cell biology》1986,103(6):2629-2636
We have found that a soluble activity present in the postribosomal supernatant fraction of Saccharomyces cerevisiae stimulates posttranslational translocation of yeast prepro-alpha-factor across yeast microsomal membranes. Stimulation of translocation is not due to a nonspecific affect on ATP levels. The activity is likely to be due to protein(s) as it is destroyed by N-ethylmaleimide, protease, or heat treatment but not by incubation with RNase. Its apparent sedimentation coefficient is approximately 9.6 S.  相似文献   

11.
We have determined that prepro-carboxypeptidase Y and a truncated form of pre-invertase can be translocated across the yeast microsomal membrane post-translationally in a homologous in vitro system. The yeast secretory protein prepro-alpha-factor which was previously shown to be an efficient posttranslational translocation substrate is therefore not unique in this regard, but rather the yeast ER protein translocation machinery is generally capable of accepting substrates from a ribosome-free, soluble pool. However, within our detection limits, full-length pre-invertase could not be translocated posttranslationally, but was translocated co-translationally. This indicates that not every fully synthesized pre-protein can use this pathway, presumably because normal or aberrant folding characteristics can interfere with translocation competence.  相似文献   

12.
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.  相似文献   

13.
W Hansen  P D Garcia  P Walter 《Cell》1986,45(3):397-406
The in vitro synthesized precursor of the alpha-factor pheromone, prepro-alpha-factor, of Saccharomyces cerevisiae was translocated across yeast microsomal membranes in either a homologous or a wheat germ cell free system. Translocated prepro-alpha-factor was glycosylated, sedimented with yeast microsomal vesicles, and was protected from digestion by added protease, but was soluble after alkaline sodium carbonate treatment. Thus prepro-alpha-factor was properly sequestered within yeast microsomal vesicles, but was not integrated into the lipid bilayer. In marked contrast to protein translocation across mammalian microsomal membranes, translocation of prepro-alpha-factor across yeast microsomal membranes could occur posttranslationally. This reaction required protein components in the yeast microsomal fraction that could be inactivated by alkylation or proteolysis, was ATP-dependent, and was insensitive to the presence of a variety of uncouplers and ionophores.  相似文献   

14.
Export of prepro-alpha-factor from Escherichia coli   总被引:1,自引:0,他引:1  
Yeast prepro-alpha-factor translocates posttranslationally into yeast microsomes in vitro. This process is strongly influenced by the extreme carboxyl-terminal region of the protein. These features contrast with the properties of most eucaryotic proteins which are translocated into the endoplasmic reticulum. We have extended these studies by introducing the gene for the wild-type and several mutant forms of prepro-alpha-factor into Escherichia coli. Prepro-alpha-factor is secreted into the periplasm and processed to pro-alpha-factor. Its translocation across the plasma membrane requires the membrane potential and the secY gene product. Deletion mutant analysis showed that features of the pro-segment were essential for secretion of prepro-alpha-factor in E. coli, while the carboxyl-terminal region, which is required in yeast, is dispensible in E. coli. Neither size nor the presence of a unique topogenic sequence was sufficient to explain the requirement for the pro-segment.  相似文献   

15.
SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.  相似文献   

16.
Characterization of HSP-70 cognate proteins from wheat   总被引:1,自引:0,他引:1  
Summary Animal and plant cells contain a family of constitutively expressed HSP-70 cognate proteins that are localized in different subcellular locations and are presumed to play a role in protein folding and transport. Utilizing antibodies raised against the yeast endoplasmicreticulum-localized HSP-70 cognate termed BiP/GRP-78, as well as antibodies raised against the Escherichia coli HSP-70 protein DnaK, we have identified and characterized a large family of closely related proteins in wheat. One protein band of 78 kDa that is apparently closely related to yeast BiP was localized in the endoplasmic reticulum. This band cross-reacted with the yeast BiP but not with the DnaK-specific antibodies. The yeast BiP antibodies also recognized a cytoplasmic protein of 70 kDa that is probably related to the HSC-70 cognate proteins. These two proteins were further confirmed as HSP-70 cognates by their ability to bind to an ATP-agarose column. Probing of proteins from purified wheat mitochondrial preparations with the yeast BiP and DnaK-specific antibodies showed that this organelle contained a family of HSP-70-related proteins. The yeast BiP antibodies recognized two mitochondrial proteins of 60 and 58 kDa, but failed to detect any protein in the size rang of 70 to 80 kDa. However, the presence of immunologically distinct proteins of 90 and 78 kDa, as well as of lower molecular weight from this family in the mitochondria, was shown by probing with the DnaK-specific antibodies. A new protein of 30 kDa, cross-reacting with anti-yeast BiP antibodies, was detected only in developing seeds, close to their maturity. The evolution of HSP-70 cognate proteins in wheat as shown in this study is discussed.  相似文献   

17.
Ribonucleoparticle (i.e. ribosome and SRP)-independent transport of proteins into mammalian microsomes is stimulated by a cytosolic ATPase which involves proteins belonging to the hsp70 family. Here we addressed the question of whether there are additional nucleoside triphosphate requirements involved in this transport mechanism. We employed a purified presecretory protein which upon solubilization in dimethyl sulfoxide and subsequent dilution into an aqueous buffer was processed by and transported into mammalian microsomes in the absence of the cytosolic ATPase. Membrane insertion of this precursor protein was found to depend on the hydrolysis of ATP and to involve a microsomal protein which can be photoaffinity inactivated with azido-ATP. Furthermore, a microsomal protein with a similar sensitivity towards photoaffinity modification with azido-ATP was observed to be involved in ribonucleoparticle-dependent transport. We suggest that a novel microsomal protein which depends on ATP hydrolysis is involved in membrane insertion of both ribonucleoparticle-dependent and -independent precursor proteins.  相似文献   

18.
Aberrant folding and fibrillar aggregation by polyglutamine (polyQ) expansion proteins are associated with cytotoxicity in Huntington's disease and other neurodegenerative disorders. Hsp70 chaperones have an inhibitory effect on fibril formation and can alleviate polyQ cytotoxicity. Here we show that the cytosolic chaperonin, TRiC, functions synergistically with Hsp70 in this process and is limiting in suppressing polyQ toxicity in a yeast model. In vitro reconstitution experiments revealed that TRiC, in cooperation with the Hsp70 system, promotes the assembly of polyQ-expanded fragments of huntingtin (Htt) into soluble oligomers of approximately 500 kDa. Similar oligomers were observed in yeast cells upon TRiC overexpression and were found to be benign, in contrast to conformationally distinct Htt oligomers of approximately 200 kDa, which accumulated at normal TRiC levels and correlated with inhibition of cell growth. We suggest that TRiC cooperates with the Hsp70 system as a key component in the cellular defense against amyloid-like protein misfolding.  相似文献   

19.
A calmodulin-dependent translocation pathway for small secretory proteins   总被引:1,自引:0,他引:1  
Shao S  Hegde RS 《Cell》2011,147(7):1576-1588
Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号