首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.  相似文献   

2.
3.
The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.  相似文献   

4.
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.  相似文献   

5.
Expression of the farnesoid X receptor (FXR; NR1H4) is limited to the liver, intestine, kidney, and adrenal gland. However, the role of FXR in the latter two organs is unknown. In the current study, we performed microarray analysis using RNA from H295R cells infected with constitutively active FXR. Several putative FXR target genes were identified, including the organic solute transporters alpha and beta (OSTalpha and OSTbeta). Electromobility shift assays and promoter-reporter studies identified functional farnesoid X receptor response elements (FXREs) in the promoters of both human genes. These FXREs are conserved in both mouse genes. Treatment of wild-type mice with 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chloro-stilben-4-yl)-oxymethyl-5-isopropyl-isoxazole (GW4064), a synthetic FXR agonist, induced OSTalpha and OSTbeta mRNAs in the intestine and kidney. Both mRNAs were also induced when wild-type, but not FXR-deficient (FXR-/-), adrenals were cultured in the presence of GW4064. OSTalpha and OSTbeta mRNA levels were also induced in the adrenals and kidneys of wild-type, but not FXR-/-, mice after the increase of plasma bile acids in response to the hepatotoxin alpha-naphthylisothiocyanate. Finally, overexpression of human OSTalpha and OSTbeta facilitated the uptake of conjugated chenodeoxycholate and the activation of FXR target genes. These results demonstrate that OSTalpha and OSTbeta are novel FXR target genes that are expressed in the adrenal gland, kidney, and intestine.  相似文献   

6.
7.
We generated and characterized a firefly luciferase reporter mouse for the nuclear receptor farnesoid X receptor (FXR). This FXR reporter mouse has basal luciferase expression in the terminal ileum, an organ with well-characterized FXRalpha signaling. In vivo luciferase activity reflected the diurnal activity pattern of the mouse, and is regulated by both natural (bile acids, chenodeoxycholic acid) and synthetic (GW4064) FXRalpha ligands. Moreover, in vivo and in vitro analysis showed luciferase activity after GW4064 administration in the liver, kidney, and adrenal gland, indicating that FXRalpha signaling is functional in these tissues. Hepatic luciferase activity was robustly induced in cholestatic mice, showing that FXRalpha signaling pathways are activated in this disease. In conclusion, we have developed an FXR reporter mouse that is useful to monitor FXRalpha signaling in vivo in health and disease. The use of this animal could facilitate the development of new therapeutic compounds that target FXRalpha in a tissue-specific manner.  相似文献   

8.
We evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities. Our data therefore suggest that activation of FXR with synthetic agonists is not useful for long term management of the metabolic syndrome, as it reduces the BA pool size and subsequently decreases energy expenditure, translating as weight gain and insulin resistance. In contrast, expansion of the BA pool size, which can be achieved by BA administration, could be an interesting strategy to manage the metabolic syndrome.  相似文献   

9.
10.
Previous studies have demonstrated a dramatic induction of inflammatory gene expression in livers from mice fed a high-fat, high-cholesterol diet containing cholate after 3-5 wk. To determine the contribution of cholate in mediating these inductions, C57BL/6 mice were fed a chow diet supplemented with increasing concentrations of cholic acid (CA) for 5 days. A dose-dependent induction in the hepatic levels of TNF-alpha, VCAM-1, ICAM-1, and SAA-2 mRNA were observed. As positive controls, a dose-dependent repression of cholesterol 7alpha-hydroxylase and a dose-dependent induction of small heterodimer partner (SHP) expression were also observed, suggesting that farnesoid X receptor (FXR) was activated. In addition, ICAM-1 and SHP mRNA levels were also induced in primary human hepatocytes when treated with chenodeoxycholic acid or GW4064, a FXR-selective agonist. The involvement of FXR in CA-induced inflammatory gene expression was further investigated in the human hepatic cell line HepG2. Both ICAM-1 and SHP expression were induced in a dose- and time-dependent manner by treatment with the FXR-selective agonist GW4064. Moreover, the induction of ICAM-1 by GW4064 was inhibited by the FXR antagonist guggulsterone or with transfection of FXR siRNA. Finally, the activity of FXR was mapped to a retinoic acid response element (RARE) site containing an imbedded farnesoid X response element (FXRE) on the human ICAM-1 promoter and FXR and retinoid X receptor were demonstrated to bind to this site. Finally, FXR-mediated activation of ICAM-1 could be further enhanced by TNF-alpha cotreatment in hepatocytes, suggesting a potential cooperation between cytokine and bile acid-signaling pathways during hepatic inflammatory events.  相似文献   

11.
Xu Z  Huang G  Gong W  Zhou P  Zhao Y  Zhang Y  Zeng Y  Gao M  Pan Z  He F 《Cellular signalling》2012,24(8):1658-1664
Because of the anti-inflammatory actions of farnesoid X receptor (FXR) agonists, FXR has received much attention as a potential therapeutic target. However, the molecular mechanisms of actions have not yet been elucidated. In the present study, we reported that in the animal model of LPS-induced liver injury, administration of the FXR natural ligand CDCA could attenuate hepatocyte inflammatory damage, reduce transaminase activities, suppress inflammation mediators (IL-6, TNF-α and ICAM-1) expression and inhibit STAT3 phosphorylation. These protective effects of FXR were accompanied by an increased expression of suppressor of cytokine signaling 3 (SOCS3), which is a negative feedback regulator of cytokine-STAT3 signaling. We then demonstrated that the beneficial effects of FXR agonist in STAT3 activation were weakened by small interfering RNA-mediated SOCS3 knockdown in hepacytes. Moreover we observed both natural ligand CDCA and synthetic ligand GW4064 could upregulate SOCS 3 expression by enhancing the promoter activity in hepatocytes. These results suggest modulation of SOCS3 expression may represent a novel mechanism through which FXR activation could selectively affect cytokine bioactivity in inflammation response. FXR ligands may be potentially therapeutic in the treatment of liver inflammatory diseases via SOCS3 induction.  相似文献   

12.
IsoBAs, stereoisomers of primary and secondary BAs, are found in feces and plasma of human individuals. BA signaling via the nuclear receptor FXR is crucial for regulation of hepatic and intestinal physiology/pathophysiology. Aim: Investigate the ability of BA-stereoisomers to bind and modulate FXR under physiological/pathological conditions. Methods: Expression-profiling, luciferase-assays, fluorescence-based coactivator-association assays, administration of (iso)-BAs to WT and cholestatic mice. Results: Compared to CDCA/isoCDCA, administration of DCA/isoDCA, UDCA/isoUDCA only slightly increased mRNA expression of FXR target genes; the induction was more evident looking at pre-mRNAs. Notably, almost 50% of isoBAs were metabolized to 3-oxo-BAs within 4 h in cell-based assays, making it difficult to study their actions. FRET-based real-time monitoring of FXR activity revealed that isoCDCA>CDCA stimulated FXR, and isoDCA and isoUDCA allowed fully activated FXR to be re-stimulated by a second dose of GW4064. In vivo co-administration of a single dose of isoBAs followed by GW4064 cooperatively activated FXR, as did feeding of UDCA in a background of endogenous FXR ligands. However, in animals with biliary obstruction and concomitant loss of intestinal BAs, UDCA was unable to increase intestinal Fgf15. In contrast, mice with an impaired enterohepatic circulation of BAs (Asbt?/?, Ostα?/?), administration of UDCA was still able to induce ileal Fgf15 and repress hepatic BA-synthesis, arguing that UDCA is only effective in the presence of endogenous FXR ligands. Conclusion: Secondary (iso)BAs cooperatively activate FXR in the presence of endogenous BAs, which is important to consider in diseases linked to disturbances in BA enterohepatic cycling.  相似文献   

13.
Hepatic parenchymal and nonparenchymal cells are highly susceptible to ethanol and its metabolites, and excessive alcohol consumption results in damage to the liver. Ethanol induces an increased prevalence for bacterial overgrowth in the small intestine and translocation of endotoxin into the portal blood. Some studies have pointed to a role for activation of Kupffer cells by gut bacteria-derived endotoxin as a primary event in mechanisms of alcoholic liver injury (ALD). GW4064, a potent farnesoid X receptor (FXR) agonist, has been developed as a hepatoprotective agent, and has been used in animal models of a variety of liver diseases. At the same time, previous experimental results showed that BAs and GW4064 inhibit bacterial overgrowth in the small intestine. It is logical to postulate that GW4064 may control or alleviate the ethanol-induced liver injury through inhibiting gut bacterial overgrowth. GW4064 activates FXR, which induces the expression of several genes with potential functions in mucosal defense to prevent intestinal bacteria overgrowth and translocation into the circulation induced by ethanol, and then will alleviate ethanol-induced liver injury. The hypothesis will provide the brand-new direction that we may prevent and treat ALD by using GW4064 through activating FXR to control gut bacteria overgrowth.  相似文献   

14.
目的:探讨研究法尼酯x受体(FXR)激动剂GW4064对裸鼠肝癌细胞移植瘤增殖及血管生成的影响。方法:选取人肝癌细胞系Hep G2进行体外培养,将细胞悬液接种于BALB/c裸鼠皮下。裸鼠成瘤后,随机分为两组,分别腹腔注射DMSO和GW4064。一周后,处死动物取肿瘤组织,通过免疫组织化学法检测肿瘤组织中Ki-67和CD31的表达,同时计数肿瘤组织中的微血管密度(CD31-MVD);Western blot法检测其FXR和白介素-8(IL-8)的蛋白表达。结果:与对照组相比,FXR激动剂GW4064处理组的肿瘤组织中FXR的蛋白表达量明显增高,微血管密度CD31-MVD值显著降低,同时Ki-67、IL-8及CD31的表达水平均显著降低。结论:FXR激动剂GW4064能显著增加FXR的表达,抑制裸鼠肝癌细胞移植瘤的增殖及新生血管的形成。  相似文献   

15.
16.
Li J  Kuruba R  Wilson A  Gao X  Zhang Y  Li S 《PloS one》2010,5(11):e13955
Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.  相似文献   

17.
18.
Kim Y  Chang KO 《Journal of virology》2011,85(23):12570-12577
Rotaviruses (group A rotaviruses) are the most important cause of severe gastroenteritis in infants and children worldwide. Currently, an antiviral drug is not available and information on therapeutic targets for antiviral development is limited for rotavirus infection. Previously, it was shown that lipid homeostasis is important in rotavirus replication. Since farnesoid X receptor (FXR) and its natural ligands bile acids (such as chenodeoxycholic acid [CDCA]) play major roles in cholesterol and lipid homeostasis, we examined the effects of bile acids and synthetic FXR agonists on rotavirus replication in association with cellular lipid levels. In a mouse model of rotavirus infection, effects of oral administration of CDCA on fecal rotavirus shedding were investigated. The results demonstrate the following. First, the intracellular contents of triglycerides were significantly increased by rotavirus infection. Second, CDCA, deoxycholic acid (DCA), and other synthetic FXR agonists, such as GW4064, significantly reduced rotavirus replication in cell culture in a dose-dependent manner. The reduction of virus replication correlated positively with activation of the FXR pathway and reduction of cellular triglyceride contents (r(2) = 0.95). Third, oral administration of CDCA significantly reduced fecal virus shedding in mice (P < 0.05). We conclude that bile acids and FXR agonists play important roles in the suppression of rotavirus replication. The inhibition mechanism is proposed to be the downregulation of lipid synthesis induced by rotavirus infection.  相似文献   

19.
This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2) and severe hypoxia (0.1% O2). We found that chenodeoxy cholic acid (CDCA) reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR), a CDCA receptor and its target gene, Small heterodimer partner (SHP) are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号