首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M Ferriol  C Pichot  F Lefèvre 《Heredity》2011,106(1):146-157
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load.  相似文献   

2.
    
According to the \"effective pollination\" hypothesis, tall stature resulting from strong apical dominance attracts greater pollinator visitation, thus allowing larger pollen loads and/or greater outcrossing rates, which in turn produces more vigorous offspring with greater genotypic variability and/or less inbreeding depression. Components of this hypothesis were tested in Verbascum thapsus, which commonly grows unbranched to over 2 m tall with strong apical dominance suppressing all axillary meristems. A natural population survey indicated that plants with visiting pollinators were significantly taller than their nearest neighboring individuals not possessing a visiting pollinator. Plants in natural populations with excluded pollinators produced seeds via a delayed selfing mechanism. However, delayed selfing under pollinator exclusion resulted in only 75% of the seed set obtained with natural pollinators. Under natural pollination, emasculated flowers experienced a 50% reduction in pollen deposition by the time of flower closure but only a 5% reduction in seed set relative to intact flowers. Hence, taller plants attracted more pollinators and maximum seed set could not be achieved without pollinators. Comparison of seed set and seed mass in plants that were artificially selfed and artificially crossed (in both the greenhouse and in natural populations) indicated that plants were fully self-compatible with no evidence of early-acting inbreeding depression. However, this does not exclude the possibility that inbreeding depression is manifested in later life stages. The results suggest that V. thapsus has a mixed mating system with potential for reproductive assurance and various levels of outcrossing depending on variables affecting pollinator availability (e.g., population size).  相似文献   

3.
    
Pollen tube growth is essential for the fertilization process in angiosperms. When pollen grains arrive on the stigma, they germinate, and the pollen tubes elongate through the styles of the pistils to deliver sperm cells into the ovules to produce the seeds. The relationship between the growth rate and style length remains unclear. In previous studies, we developed a liquid pollen germination medium for observing pollen tube growth. In this study, using this medium, we examined the pollen tube growth ability in Petunia axillaris subsp. axillaris, P. axillaris subsp. parodii, P. integrifolia, and P. occidentalis, which have different style lengths. Petunia occidentalis had the longest pollen tubes after 6 h of culture but had a relatively shorter style. Conversely, the pollination experiments revealed that P. axillaris subsp. parodii, which had the longest style, produced the longest pollen tubes in vivo. The results revealed no clear relationship between the style lengths and the growth rate of pollen tubes in vitro. Interspecific pollinations indicated that the styles affected pollen tube growth. We concluded that, in vitro, the pollen tubes grow without being affected by the styles, whereas, in vivo, the styles significantly affected pollen tube growth. Furthermore, interspecific pollination experiments implied that the pollen tube growth tended to be suppressed in the styles of self-incompatibility species. Finally, we discussed the pollen tube growth ability in relation to style lengths.  相似文献   

4.
    
Two animal-pollinated hermaphrodite plants, Pedicularis siphonantha and P. longiflora , have been used to investigate factors limiting seed production in natural populations. To evaluate the potential seed abortion due to resources limitation, seed development has been observed and seed count conducted twice. Seed production per capsule has been compared when flowers have been removed and in a control group. Open pollination has been investigated and pollen supplementation undertaken to estimate the possibility of pollen limitation. Results show that seed abortion is frequent. Stigmatic pollen load is significantly higher than ovule number per ovary under open pollination for both species. Additional self and outcross pollen did not affect seed production. Flower removal significantly increases seed production per capsule, which indicates that seed production of the studied species is limited by available resources. To detect differences in seed production between flowers pollinated by self and outcross pollen, hand pollination of bagged flowers has also been conducted in natural populations of the two Pedicularis species. Compared with open pollination, hand-pollinating self-pollen decreases, while outcross pollen increases seed production per capsule. Such results suggest that inbreeding depression in the two self-compatible species may also result in partial seed abortion under open pollination if mixed pollen is deposited on the stigma. Our results also suggest that pollen interference plays an important role in low female fertility in the two Pedicularis species.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 83–89.  相似文献   

5.
    
The dispersed pollen taxon Cerebropollenites recovered from the Jurassic of Afghanistan and Cretaceous of China was investigated ultrastructurally. Cerebropollenites lacks the differentiation of the proximal and distal hemispheres, a faint proximal triradiate mark, and an equatorial fringe, all features found in extant Tsuga, however, the gross pollen morphology, and the wall ultrastructure of Cerebropollenites suggests an affinity with the extant genus Tsuga (Section Micropeuce). The differences observed between Cerebropollenites and Tsuga are no greater than the differences observed between the pollen of the two Sections of Tsuga, Hesperopeuce and Micropeuce. The occurrence of Cerebropollenites in the Jurassic and Cretaceous is, thus far, the only fossil evidence that the genus Tsuga may have been present in the Mesozoic, and suggests that the Pinaceae, which is unequivocally recognized in the Cretaceous, may have had an earlier origin.  相似文献   

6.
    
Plant reproductive ecology is one of the research hotspots in ecology. With the increasing attention paid to the conservation of plant diversity, the research on reproductive characteristics and flowering biological characteristics of more species has attracted more attention. However, plant reproduction is affected by multiple interacting factors such as pollen limitation and resource availability. Vitex negundo var. heterophylla (Franch.) Rehder (Lamiaceae) is a significant species for water and soil conservation. Previous studies have revealed its mating system by the biological characteristics of flowering and SSR markers, but its reproductive strategies remain to be further studied. We evaluated reproductive success through artificial pollination to explore the reproductive characteristics of V. negundo var. heterophylla for the first time. From the results of fruit set, there is a mixed mating system dominated by outcrossing in V. negundo var. heterophylla accompanied by self-compatibility, and it cannot carry out autonomous selfing. Our data show the pollinator-mediated interaction in the success of reproduction, whereas the effect of anemophily is very weak. And the seed germination rate of inbred line progenies was lower than that of hybrid progenies, which is suspected to be caused by inbreeding depression. The research will provide scientific information for the protection and conservation of V. negundo var. heterophylla from the point of view of reproduction. In sum, the results are necessary to protect animal vectors in the background of insect decline.  相似文献   

7.
Floral phenology, pollen quality and seed set of Plantago crassifolia plants, grown in the presence of increasing NaCl concentrations, were studied to test how this Mediterranean halophyte responded to salt stress during the reproductive phase of its life cycle. Reproductive success was maximal in plants grown in non-saline conditions, or in the presence of 100 mM NaCl, but it was negatively affected by higher salinities, due to a progressive reduction of pollen fertility, seed set, and seed viability.  相似文献   

8.
    
As most plants of the Mediterranean region bloom in spring, there have been few studies of the reproductive biology of species with autumn–winter flowering. In this study, we investigate the breeding system of Anagyris foetida , one of the few shrubs that blooms at this time. The floral, phenological, and reproductive aspects of two populations of this Mediterranean legume from south-west Spain were studied via field and laboratory experiments. The variability of fruit and seeds was studied in another 12 Iberian populations with respect to certain meteorological parameters (temperature and rainfall). Anagyris foetida shows cauliflory, marked floral longevity, and adichogamy. The peak of flowering is in January–February. It is self-compatible, with no clear advantage of cross- over self-pollination, and with virtually no autonomous self-pollination. This is because the stigma, like some other legumes, prevents the germination of pollen if its surface is not ruptured by pollinators. The number of seeds per fruit under natural pollination was positively correlated with the total rainfall during the fruiting period (from January to May), and significantly influenced the percentage of fruit weight represented by the pericarp, in the sense that the smaller the number of viable seeds in the fruit, the greater the percentage of pericarp weight.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 519–532.  相似文献   

9.
We model the evolution of plant mating systems under the joint effects of pollen discounting and pollen limitation, using a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. Stable mixed mating systems occur for a wide range of parameter values with pollen discounting alone. However, when typical levels of pollen limitation are combined with pollen discounting, stable selfing rates are always high but less than 1 (0.9相似文献   

10.
Busch JW  Delph LF 《Annals of botany》2012,109(3):553-562

Background

The field of plant mating-system evolution has long been interested in understanding why selfing evolves from outcrossing. Many possible mechanisms drive this evolutionary trend, but most research has focused upon the transmission advantage of selfing and its ability to provide reproductive assurance when cross-pollination is uncertain. We discuss the shared conceptual framework of these ideas and their empirical support that is emerging from tests of their predictions over the last 25 years.

Scope

These two hypotheses are derived from the same strategic framework. The transmission advantage hypothesis involves purely gene-level selection, with reproductive assurance involving an added component of individual-level selection. Support for both of these ideas has been garnered from population-genetic tests of their predictions. Studies in natural populations often show that selfing increases seed production, but it is not clear if this benefit is sufficient to favour the evolution of selfing, and the ecological agents limiting outcross pollen are often not identified. Pollen discounting appears to be highly variable and important in systems where selfing involves multiple floral adaptations, yet seed discounting has rarely been investigated. Although reproductive assurance appears likely as a leading factor facilitating the evolution of selfing, studies must account for both seed and pollen discounting to adequately test this hypothesis.

Conclusions

The transmission advantage and reproductive assurance ideas describe components of gene transmission that favour selfing. Future work should move beyond their dichotomous presentation and focus upon understanding whether selection through pollen, seed or both explains the spread of selfing-rate modifiers in plant populations.  相似文献   

11.
    
Recent studies of mating system evolution have attempted to include aspects of pollination biology in analysis of both theoretical models and experimental systems. In light of this growing trend, we propose a simple population genetic model for the evolution of gametophytic self-incompatibility, incorporating parameters for pollen discounting and pollen export/capture. In this model, we consider several cases that span the spectrum for dominance of the mutant self-incompatibility allele and for the degree of incompatibility conferred by the allele. We confirm earlier results that inbreeding depression is required for successful invasion of the self-incompatibility allele and we demonstrate that, unless pollen discounting is very low, the level of inbreeding depression must be very high for an allele conferring self-incompatibility to become established. Finally, we show that the dominance of the mutant allele has a greater impact on the fate of a newly arisen self-incompatibility allele than the strength of the incompatibility conferred by the allele. In particular, the more recessive the self-incompatibility expression in heterozygote stigmas and the weaker the response induced, the easier it is for a self-incompatibility allele to invade.  相似文献   

12.
    
Measurements of size and asymmetry in morphology might provide early indications of damaging effects of inbreeding or other genetic changes in conservation breeding programs. We examined the effects of inbreeding on size and fluctuating asymmetry (FA) in skull and limb bone measurements in experimental populations of three subspecies of Peromyscus polionotus mice that had previously been shown to suffer significant reductions in reproductive success when inbred. Inbreeding caused significant depression in mean size in two of the subspecies (P. p. rhoadsi and P. p. subgriseus), but the effects were smaller in the third (P. p. leucocephalus). Inbreeding caused an increase in FA of just one of eight bilateral traits in one subspecies (P. p. rhoadsi). Inbreeding depression in size was more easily detected than the effects of inbreeding on FA. FA may be much less sensitive to inbreeding and other stresses than are more direct measures of fitness such as reproductive output and body mass growth rate. Given the large sample sizes and statistical complexity required to assess changes to typically very small levels of FA in captive populations, FA will not likely provide a useful measure of inbreeding depression in captive populations. Zoo Biol. 32:125‐133, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Pollen limitation (PL) of seed production creates unique conditions for reproductive adaptation by angiosperms, in part because, unlike under ovule or resource limitation, floral interactions with pollen vectors can contribute to variation in female success. Although the ecological and conservation consequences of PL have received considerable attention in recent times, its evolutionary implications are poorly appreciated. To identify general influences of PL on reproductive adaptation compared with those under other seed-production limits and their implications for evolution in altered environments, we derive a model that incorporates pollination and post-pollination aspects of PL. Because PL always favours increased ovule fertilization, even when population dynamics are not seed limited, it should pervasively influence selection on reproductive traits. Significantly, under PL the intensity of inbreeding does not determine whether outcrossing or autonomous selfing can evolve, although it can affect which response is most likely. Because the causes of PL are multifaceted in both natural and anthropogenically altered environments, the possible outcrossing solutions are diverse and context dependent, which may contribute to the extensive variety of angiosperm reproductive characteristics. Finally, the increased adaptive options available under PL may be responsible for positive global associations between it and angiosperm diversity.  相似文献   

14.
研究了储藏条件和时间对 6种湿地植物种子萌发的影响 ,以便为采用种子恢复和重建湿地植被提供指导。将新鲜种子在浸泡 -冷、湿 -冷、湿 /干 -冷和干 -冷 4种条件下储藏 3个月后再进行种子萌发 ,结果表明 ,普通野生稻 (Oryza rufipogon)和野慈姑(Sagittaria trifolia)在 3种水胁迫冷藏条件下的种子萌发率显著高于干 -冷储藏时的萌发率 ;柳叶箬 (Isachne globosa)和水毛花(Scirpus triangulatus)种子发芽率最高的储藏条件分别是浸泡 -冷或湿 -冷储藏和干 /湿 -冷藏。小慈姑 (Sagittaria potam-ogetifolia)和野荸荠 (Eleocharisplantagineiformis)在 4种储藏条件下的发芽率没有显著差异。将种子在干 -冷条件下分别储藏1个月、6个月、18个月和 30个月后再进行萌发 ,结果显示储藏时间延长显著提高了普通野生稻、柳叶箬、野荸荠和小慈姑的发芽率。野慈姑的发芽率在前 3个储藏期随储藏时间延长而提高 ,但 30个月后发芽率开始下降。水毛花在所有储藏期间的发芽率均小于 2 %。结果建议采用种子恢复和重建湿地植被时 ,将种子水胁迫冷藏利于种子的萌发。同时 ,结果也表明干 -冷储藏 30个月的种子仍可作为湿地恢复的种质资源  相似文献   

15.
    
Inbreeding depression plays a major role in shaping mating systems: in particular, inbreeding avoidance is often proposed as a mechanism explaining extra‐pair reproduction in socially monogamous species. This suggestion relies on assumptions that are rarely comprehensively tested: that inbreeding depression is present, that higher kinship between social partners increases infidelity, and that infidelity reduces the frequency of inbreeding. Here, we test these assumptions using 26 years of data for a cooperatively breeding, socially monogamous bird with high female infidelity, the superb fairy‐wren (Malurus cyaneus). Although inbred individuals were rare (~6% of offspring), we found evidence of inbreeding depression in nestling mass (but not in fledgling survival). Mother–son social pairings resulted in 100% infidelity, but kinship between a social pair did not otherwise predict female infidelity. Nevertheless, extra‐pair offspring were less likely to be inbred than within‐pair offspring. Finally, the social environment (the number of helpers in a group) did not affect offspring inbreeding coefficients or inbreeding depression levels. In conclusion, despite some agreement with the assumptions that are necessary for inbreeding avoidance to drive infidelity, the apparent scarcity of inbreeding events and the observed levels of inbreeding depression seem insufficient to explain the ubiquitous infidelity in this system, beyond the mother–son mating avoidance.  相似文献   

16.
    
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association.  相似文献   

17.
    
The evolution of self‐fertilization is one of the most commonly traversed transitions in flowering plants, with profound implications for population genetic structure and evolutionary potential. We investigated factors influencing this transition using Witheringia solanacea, a predominantly self‐incompatible (SI) species within which self‐compatible (SC) genotypes have been identified. We showed that self‐compatibility in this species segregates with variation at the S‐locus as inherited by plants in F1 and F2 generations. To examine reproductive assurance and the transmission advantage of selfing, we placed SC and SI genotypes in genetically replicated gardens and monitored male and female reproductive success, as well as selfing rates of SC plants. Self‐compatibility did not lead to increased fruit or seed set, even under conditions of pollinator scarcity, and the realized selfing rate of SC plants was less than 10%. SC plants had higher fruit abortion rates, consistent with previous evidence showing strong inbreeding depression at the embryonic stage. Although the selfing allele did not provide reproductive assurance under observed conditions, it also did not cause pollen discounting, so the transmission advantage of selfing should promote its spread. Given observed numbers of S‐alleles and selfing rates, self‐compatibility should spread even under conditions of exceedingly high initial inbreeding depression.  相似文献   

18.
    
Most studies of the effects of inbreeding focus on vegetative vigor and reproductive output through the female (fruit and seed) function. This study not only examines the effects of inbreeding on the female function but it also examines the effects of inbreeding on pollen performance both in vitro and in vivo. This study used Cucurbita texana, a wild gourd, and was performed under field conditions. In vivo performance was assessed by placing equal amounts of pollen from either the inbred or outcrossed plants onto a stigma together with pollen from a tester line. As with other studies, we found that outcrossed plants had greater reproductive output (male flowers and fruits) than plants produced from self pollinations. Unlike most studies of inbreeding depression, which mostly ignore the male function of plants, we also found that the pollen produced by outcrossed plants had faster pollen tube growth in vitro than the pollen produced on selfed plants. Moreover, pollen from selfed plants sired significantly fewer seeds than pollen from outcrossed plants under conditions of pollen competition (i.e. the number of pollen grains deposited onto the stigmas was larger than the number of available ovules). These findings indicate that inbreeding affects the performance of the resulting sporophytic generation and the microgametophytes they produce.  相似文献   

19.
    
The reproductive success of Mandevilla pentlandiana was studied to disclose its reproductive strategy, and to determine the links between nectar production, breeding system, fruit set and inflorescence size. The plant produces many inflorescences with a large number of flowers but initiates few fruits (9%). This vine is self-compatible but not autogamous. Given that no significant differences could be detected considering many traits (ripe and abortive fruit sets, fruit quality, and seedling survival) between the pollination treatments (self-, cross-and natural-), the low natural fruit set was not related to pollen limitation. Fruits were not distributed at random within inflorescences (earlier fruits had the highest probability of maturation) but there were no significant differences in fruit quality according to different fruit positions. Conversely, the time of fruit initiation influenced most of the fruit-traits. Many developing fruits were aborted (20%). An increase in the probability of abortion was detected when the whole inflorescence was hand pollinated. In addition, a positive correlation was detected between the abortions and the number of ripe fruits which developed before them. Looking at our data from an evolutionary perspective, we argue that a theoretical inflorescence size, corresponding to the intersection point between the mean values of fruit number and fruit set per inflorescence, can be assumed to indicate the optimum inflorescence size that maximizes equally both female and male functions. Comparison between the theoretical and the observed mean inflorescence size suggests, that for M. pentlandiana , pollen donation may be the primary evolutionary factor behind excess flowers.  相似文献   

20.
Flowers frequently receive both self (S) and outcross (OC) pollen, but S pollen often sires proportionally fewer seeds. Failure of S pollen can reflect evolved mechanisms that promote outcrossing and/or inbreeding depression expressed during seed development. The relative importance of these two processes was investigated in Aquilegia caerulea, a self-compatible perennial herb. In the field I performed single-donor (S or OC) and mixed-donor (S plus OC) pollinations to compare the relative success of both pollen types at various stages from pollen germination to seed maturity. Single-donor S pollinations produced significantly fewer and lighter seeds (x decrease = 12% and 3%, respectively) than OC pollinations. Abortion rates differed by an average of 38% whereas fertilization rates differed by only 5%, indicating that most differences in seed number arose postzygotically. This suggests that inbreeding depression was responsible for most failure of S pollen. One prezygotic effect measured was that 10% fewer S than OC pollen tubes reached ovaries after 42 hr, suggesting S pollen might fertilize proportionately fewer ovules after mixed pollination. Using allozyme markers, I found mixed-donor pollinations produced significantly more and heavier outcrossed than selfed seeds. However, the proportion of selfed seed, fertilized ovules, and aborted seeds for mixed-donor fruits were each predictable from pollen performance in single-donor fruits, suggesting that differential paternity is best explained by inbreeding depression during seed development. Even given these similarities between mixed- and single-donor fruits in the relative performance of S and OC pollen, both individual seed weight and seed set were significantly higher in multiply-sired fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号