首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial dysfunction plays a central role in glutamate-evoked neuronal excitotoxicity, and mitochondrial fission/fusion dynamics are essential for mitochondrial morphology and function. Here, we establish a novel mechanistic linker among glutamate excitotoxicity, mitochondrial dynamics, and mitochondrial dysfunction in spinal cord motor neurons. Ca2+-dependent activation of the cysteine protease calpain in response to glutamate results in the degradation of a key mitochondrial outer membrane fusion regulator, mitofusin 2 (MFN2), and leads to MFN2-mediated mitochondrial fragmentation preceding glutamate-induced neuronal death. MFN2 deficiency impairs mitochondrial function, induces motor neuronal death, and renders motor neurons vulnerable to glutamate excitotoxicity. Conversely, MFN2 overexpression blocks glutamate-induced mitochondrial fragmentation, mitochondrial dysfunction, and/or neuronal death in spinal cord motor neurons both in vitro and in mice. The inhibition of calpain activation also alleviates glutamate-induced excitotoxicity of mitochondria and neurons. Overall, these results suggest that glutamate excitotoxicity causes mitochondrial dysfunction by impairing mitochondrial dynamics via calpain-mediated MFN2 degradation in motor neurons and thus present a molecular mechanism coupling glutamate excitotoxicity and mitochondrial dysfunction.  相似文献   

2.
Glutamate uptake is a main function of astrocytes to keep extracellular glutamate levels low and protect neurons against glutamate-induced excitotoxicity. On the other hand, astrocyte networks formed by gap junctions, which are consisted with connexins and connecting neighboring cells, are reported to play a critical role in maintaining the homeostasis in the brain. In the present study, we examined the effects of gap junction inhibitors on the glutamate uptake activity in cultured rat cortical astrocytes. At first, we confirmed the effects of gap junction inhibitors, 1-octanol and carbenoxolone, on cell–cell communication by the scrape-loading assay using a fluorescent dye Lucifer yellow. Both of 1-octanol and carbenoxolone treatments for 20 min in cultured astrocytes significantly suppressed the cell–cell communication assessed as the distance of dye-spreading. 1-octanol and carbenoxolone increased the glutamate uptake by astrocytes and glutamate aspartate transporter (GLAST) expression on the cell membrane. These results suggest that gap junction inhibitors increase the glutamate uptake activity through the increase of GLAST proteins located on the cell membrane. The regulation of gap junction in astrocytes might protect neurons against glutamate-induced excitotoxicity.  相似文献   

3.
Adipose tissue expresses components of the renin-angiotensin system (RAS). Angiotensin converting enzyme (ACE2), a new component of the RAS, catabolizes the vasoconstrictor peptide ANG II to form the vasodilator angiotensin 1-7 [ANG-(1-7)]. We examined whether adipocytes express ACE2 and its regulation by manipulation of the RAS and by high-fat (HF) feeding. ACE2 mRNA expression increased (threefold) during differentiation of 3T3-L1 adipocytes and was not regulated by manipulation of the RAS. Male C57BL/6 mice were fed low- (LF) or high-fat (HF) diets for 1 wk or 4 mo. At 1 wk of HF feeding, adipose expression of angiotensinogen (twofold) and ACE2 (threefold) increased, but systemic angiotensin peptide concentrations and blood pressure were not altered. At 4 mo of HF feeding, adipose mRNA expression of angiotensinogen (twofold) and ACE2 (threefold) continued to be elevated, and liver angiotensinogen expression increased (twofold). However, adipose tissue from HF mice did not exhibit elevated ACE2 protein or activity. Increased expression of ADAM17, a protease responsible for ACE2 shedding, coincided with reductions in ACE2 activity in 3T3-L1 adipocytes, and an ADAM17 inhibitor decreased media ACE2 activity. Moreover, ADAM17 mRNA expression was increased in adipose tissue from 4-mo HF-fed mice, and plasma ACE2 activity increased. However, HF mice exhibited marked increases in plasma angiotensin peptide concentrations (LF: 2,141 +/- 253; HF: 6,829 +/- 1,075 pg/ml) and elevated blood pressure. These results demonstrate that adipocytes express ACE2 that is dysregulated in HF-fed mice with elevated blood pressure compared with LF controls.  相似文献   

4.
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain.  相似文献   

5.
Abstract: Polyamines positively modulate the activity of the N -methyl- d -aspartate (NMDA)-sensitive glutamate receptors. The concentration of polyamines in the brain increases in certain pathological conditions, such as ischemia and brain trauma, and these compounds have been postulated to play a role in excitotoxic neuronal death. In primary cultures of rat cerebellar granule neurons, exogenous application of the polyamines spermidine and spermine (but not putrescine) potentiated the delayed neurotoxicity elicited by NMDA receptor stimulation with glutamate. Furthermore, both toxic and nontoxic concentrations of glutamate stimulated the activity of ornithine decarboxylase (ODC)—the key regulatory enzyme in polyamine synthesis—and increased the concentration of ODC mRNA in cerebellar granule neurons but not in glial cells. Glutamate-induced ODC activation but not neurotoxicity was blocked by the ODC inhibitor difluoromethylornithine. Thus, high extracellular polyamine concentrations potentiate glutamate-triggered neuronal death, but the glutamate-induced increase in neuronal ODC activity may not play a determinant role in the cascade of intracellular events responsible for delayed excitotoxicity.  相似文献   

6.
Pleiotrophin (PTN) is a secreted heparin-binding cytokine that signals diverse functions, including lineage-specific differentiation of glial progenitor cells, axonal outgrowth and angiogenesis. Neurotoxicity mediated by glutamate receptor is thought to play a role in various neurodegenerative disorders. In the present study, we examined the effect of PTN on the neuronal viability of hippocampal neurons in vitro by using the immunostaining of MAP2 and permeability of propidium iodide. PTN significantly prevented glutamate-induced neurotoxicity when hippocampal neurons were treated with PTN after the glutamate stimulation. PTN significantly promoted glutamate-induced neurotoxicity, when cells were incubated with PTN before and after the glutamate stimulation. Thus, the effect of PTN on the neuronal viability of hippocampal neurons largely depends on the timing of the treatment of PTN. The treatment of PTN promoted dendrite-specific expression of MAP2, indicating that PTN stabilizes microtubule system at dendrites. The data suggest that PTN may be relevant to be concerned with glutamate-induced neurotoxicity of hippocampal neurons.  相似文献   

7.
Lai ZW  Hanchapola I  Steer DL  Smith AI 《Biochemistry》2011,50(23):5182-5194
ADAM17, also known as tumor necrosis factor α-converting enzyme, is involved in the ectodomain shedding of many integral membrane proteins. We have previously reported that ADAM17 is able to mediate the cleavage secretion of the ectodomain of human angiotensin-converting enzyme 2 (ACE2), a functional receptor for the severe acute respiratory syndrome coronavirus. In this study, we demonstrate that purified recombinant human ADAM17 is able to cleave a 20-amino acid peptide mimetic corresponding to the extracellular juxtamembrane region of human ACE2 between Arg(708) and Ser(709). A series of peptide analogues were also synthesized, showing that glutamate subtitution at Arg(708) and/or Arg(710) attenuated the cleavage process, while alanine substitution at Arg(708) and/or Ser(709) did not inhibit peptide cleavage by recombinant ADAM17. Analysis of CD spectra showed a minimal difference in the secondary structure of the peptide analogues in the buffer system used for the ADAM17 cleavage assay. The observation of the shedding profiles of ACE2 mutants expressing CHO-K1 and CHO-P cells indicates that the Arg(708) → Glu(708) mutation and the Arg(708)Arg(710) → Glu(708)Glu(710) double mutation produced increases in the amount of ACE2 shed when stimulated by phorbol ester PMA. In summary, we have demonstrated that ADAM17 is able to cleave ACE2 peptide sequence analogues between Arg(708) and Ser(709). These findings also indicate that Arg(708) and Arg(710) play a role in site recognition in the regulation of ACE2 ectodomain shedding mediated by ADAM17.  相似文献   

8.
9.
Glutamate-induced excitotoxicity is one of the major underlying mechanisms for neurodegenerative diseases. Efforts are being made to treat such conditions with an array of natural compounds that can modulate the release of glutamate or the underlying mechanisms associated with it. Withania somnifera extract has potent pharmacologic activity similar to that of Korean Ginseng tea and is used to treat several neuronal disorders. However, to date, little efforts have been made to evaluate individual constituents of this plant for neurodegenerative disorders. Present study was carried out to investigate withanolide-A, one of the active constituents of Withania somnifera against glutamate-induced excitotoxicity in retinoic acid differentiated Neuro2a neuroblastoma cells. The results indicated that glutamate treatment for 2 h induced death in cells that was significantly attenuated by pre-treatment with MK-801 (specific NMDA receptor antagonist) and different concentrations of withanolide-A. Withanolide-A abated the glutamate-induced influx of intracellular calcium and excessive ROS production significantly. Further on, glutamate treatment resulted in increased levels of pro-apoptotic and decreased levels of anti-apoptotic proteins, and these protein levels were normalized by various doses of withanolide-A. All of these protective effects were partly due to inhibition of MAPK family proteins and activation of PI3K/Akt signaling. Thus, our results suggest that withanolide-A may serve as potential neuroprotective agent.  相似文献   

10.
Minocycline has been shown to have remarkably neuroprotective qualities, but underlying mechanisms remain elusive. We reported here the robust neuroprotection by minocycline against glutamate-induced apoptosis through regulations of p38 and Akt pathways. Pre-treatment of cerebellar granule neurons (CGNs) with minocycline (10-100 microm) elicited a dose-dependent reduction of glutamate excitotoxicity and blocked glutamate-induced nuclear condensation and DNA fragmentations. Using patch-clamping and fluorescence Ca2+ imaging techniques, it was found that minocycline neither blocked NMDA receptors, nor reduced glutamate-caused rises in intracellular Ca2+. Instead, confirmed by immunoblots, minocycline in vivo and in vitro was shown to directly inhibit the activation of p38 caused by glutamate. A p38-specific inhibitor, SB203580, also attenuated glutamate excitotoxicity. Furthermore, the neuroprotective effects of minocycline were blocked by phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 and wortmannin, while pharmacologic inhibition of glycogen synthase kinase 3beta (GSK3beta) attenuated glutamate-induced apoptosis. In addition, immunoblots revealed that minocycline reversed the suppression of phosphorylated Akt and GSK3beta caused by glutamate, as were abolished by PI3-K inhibitors. These results demonstrate that minocycline prevents glutamate-induced apoptosis in CGNs by directly inhibiting p38 activity and maintaining the activation of PI3-K/Akt pathway, which offers a novel modality as to how the drug exerts protective effects.  相似文献   

11.
Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.  相似文献   

12.
Glutamate excitotoxicity is involved in many neurodegenerative diseases including Alzheimer’s disease (AD). Attenuation of glutamate toxicity is one of the therapeutic strategies for AD. Wolfberry (Lycium barbarum) is a common ingredient in oriental cuisines. A number of studies suggest that wolfberry has anti-aging properties. In recent years, there is a trend of using dried Wolfberry as food supplement and health product in UK and North America. Previously, we have demonstrated that a fraction of polysaccharide from Wolfberry (LBA) provided remarkable neuroprotective effects against beta-amyloid peptide-induced cytotoxicity in primary cultures of rat cortical neurons. To investigate whether LBA can protect neurons from other pathological factors such as glutamate found in Alzheimer brain, we examined whether it can prevent neurotoxicity elicited by glutamate in primary cultured neurons. The glutamate-induced cell death as detected by lactate dehydrogenase assay and caspase-3-like activity assay was significantly reduced by LBA at concentrations ranging from 10 to 500 μg/ml. Protective effects of LBA were comparable to memantine, a non-competitive NMDA receptor antagonist. LBA provided neuroprotection even 1 h after exposure to glutamate. In addition to glutamate, LBA attenuated N-methyl-d-aspartate (NMDA)-induced neuronal damage. To further explore whether LBA might function as antioxidant, we used hydrogen peroxide (H2O2) as oxidative stress inducer in this study. LBA could not attenuate the toxicity of H2O2. Furthermore, LBA did not attenuate glutamate-induced oxidation by using NBT assay. Western blot analysis indicated that glutamate-induced phosphorylation of c-jun N-terminal kinase (JNK) was reduced by treatment with LBA. Taken together, LBA exerted significant neuroprotective effects on cultured cortical neurons exposed to glutamate.  相似文献   

13.
Heat shock protects cultured neurons from glutamate toxicity.   总被引:12,自引:0,他引:12  
Expression of heat shock proteins (HSPs) occurs in brain after ischemia and status epilepticus. We report that induction of the heat shock response in cortical cultures protects neurons from glutamate-induced excitotoxicity. Cultures heated to 42.2 degrees C for 20 min showed an overall decrease in protein synthesis but an increase in the synthesis of approximately 72 and approximately 85 kd proteins and in the levels of HSP70 mRNA. Heat shock inhibited excitotoxicity in cells exposed to glutamate at 3 or 24 hr following heat exposure, but not when the interval between heat and glutamate exposure was shortened to 15 min or lengthened to 48 hr. Protection due to heat shock required new protein synthesis, since it did not occur when protein or RNA synthesis inhibitors were added. By ameliorating excitotoxic processes, HSPs may attenuate brain injury in certain pathologic conditions.  相似文献   

14.
The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases. Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain. In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.  相似文献   

15.
Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline.  相似文献   

16.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

17.
Our previous studies have demonstrated that ginsenoside Rd (GSRd), one of the principal ingredients of Pana notoginseng, has neuroprotective effects against ischemic stroke. However, the possible mechanism(s) underlying the neuroprotection of GSRd is/are still largely unknown. In this study, we treated glutamate-injured cultured rat hippocampal neurons with different concentrations of GSRd, and then examined the changes in neuronal apoptosis and intracellular free Ca2+ concentration. Our MTT assay showed that GSRd significantly increased the survival of neurons injured by glutamate in a dose-dependent manner. Consistently, TUNEL and Caspase-3 staining showed that GSRd attenuated glutamate-induced cell death. Furthermore, calcium imaging assay revealed that GSRd significantly attenuated the glutamate-induced increase of intracellular free Ca2+ and also inhibited NMDA-triggered Ca2+ influx. Thus, the present study demonstrates that GSRd protects the cultured hippocampal neurons against glutamate-induced excitotoxicity, and that this neuroprotective effect may result from the inhibitory effects of GSRd on Ca2+ influx.  相似文献   

18.
The excessive activation of N-methyl-D-aspartate (NMDA) receptors by glutamate results in neuronal excitotoxicity. cAMP is a key second messenger and contributes to NMDA receptor-dependent synaptic plasticity. Adenylyl cyclases 1 (AC1) and 8 (AC8) are the two major calcium-stimulated ACs in the central nervous system. Previous studies demonstrate AC1 and AC8 play important roles in synaptic plasticity, memory, and persistent pain. However, little is known about the possible roles of these two ACs in glutamate-induced neuronal excitotoxicity. Here, we report that genetic deletion of AC1 significantly attenuated neuronal death induced by glutamate in primary cultures of cortical neurons, whereas AC8 deletion did not produce a significant effect. AC1, but not AC8, contributes to intracellular cAMP production following NMDA receptor activation by glutamate in cultured cortical neurons. AC1 is involved in the dynamic modulation of cAMP-response element-binding protein activity in neuronal excitotoxicity. To explore the possible roles of AC1 in cell death in vivo, we studied neuronal excitotoxicity induced by an intracortical injection of NMDA. Cortical lesions induced by NMDA were significantly reduced in AC1 but not in AC8 knock-out mice. Our findings provide direct evidence that AC1 plays an important role in neuronal excitotoxicity and may serve as a therapeutic target for preventing excitotoxicity in stroke and neurodegenerative diseases.  相似文献   

19.
The neuroprotective effect and molecular mechanisms underlying preconditioning with N-methyl-D-aspartate (NMDA) in cultured hippocampal neurons have not been described. Pre-incubation with subtoxic concentrations of the endogenous neurotransmitter glutamate protects vulnerable neurons against NMDA receptor-mediated excitotoxicity. As a result of physiological preconditioning, NMDA significantly antagonizes the neurotoxicity resulting from subsequent exposure to an excitotoxic concentration of glutamate. The protective effect of glutamate or NMDA is time- and concentration-dependent, suggesting that sufficient agonist and time are required to establish an intracellular neuroprotective state. In these cells, the TrkB ligand, brain-derived neurotrophic factor (BDNF) attenuates glutamate toxicity. Therefore, we tested the hypothesis that NMDA protects neurons via a BDNF-dependent mechanism. Exposure of hippocampal cultures to a neuroprotective concentration of NMDA (50 microM) evoked the release of BDNF within 2 min without attendant changes in BDNF protein or gene expression. The accumulated increase of BDNF in the medium is followed by an increase in the phosphorylation (activation) of TrkB receptors and a later increase in exon 4-specific BDNF mRNA. The neuroprotective effect of NMDA was attenuated by pre-incubation with a BDNF-blocking antibody and TrkB-IgG, a fusion protein known to inhibit the activity of extracellular BDNF, suggesting that BDNF plays a major role in NMDA-mediated survival. These results demonstrate that low level stimulation of NMDA receptors protect neurons against glutamate excitotoxicity via a BDNF autocrine loop in hippocampal neurons and suggest that activation of neurotrophin signaling pathways plays a key role in the neuroprotection of NMDA.  相似文献   

20.
Abstract: Large numbers of neuritic plaques surrounded by reactive astrocytes are characteristic of Alzheimer's disease (AD). There is a large body of research supporting a causal role for the amyloid β peptide (Aβ), a main constituent of these plaques, in the neuropathology of AD. Several hypotheses have been proposed to explain the toxicity of Aβ including free radical injury and excitotoxicity. It has been reported that treatment of neuronal/astrocytic cultures with Aβ increases the vulnerability of neurons to glutamate-induced cell death. One mechanism that may explain this finding is inhibition of the astrocyte glutamate transporter by Aβ. The aim of the current study was to determine if Aβs inhibit astrocyte glutamate uptake and if this inhibition involves free radical damage to the transporter/astrocytes. We have previously reported that Aβ can generate free radicals, and this radical production was correlated with the oxidation of neurons in culture and inhibition of astrocyte glutamate uptake. In the present study, Aβ (25–35) significantly inhibited l -glutamate uptake in rat hippocampal astrocyte cultures and this inhibition was prevented by the antioxidant Trolox. Decreases in astrocyte function, in particular l -glutamate uptake, may contribute to neuronal degeneration such as that seen in AD. These results lead to a revised excitotoxicity/free radical hypothesis of Aβ toxicity involving astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号