首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
两种不同根系类型湿地植物的根系生长   总被引:19,自引:2,他引:19  
实验设计了一个水培系统,利用生活污水培养,对4种“须根型”植物美人蕉、风车草、象草和香根草和4种根茎型植物菖蒲、水鬼蕉、芦苇和水烛的根系生长进行比较研究。该系统由用于盛污水的塑料桶(顶部直径36.5cm,底部直径30.Ocm,高34.5cm)和用于固定植物于水面的泡沫板构成。每桶种植1株植物,每种种5株。水培至10周时,须根型植物的平均根数达到1349条/株,而根茎型植物的平均根数只有549条/株。实验结束(水培第21周)时,须根型植物的平均根生物量为11.3g/株,根茎型植物的平均根生物量为7.4g/株。须根型植物根系中,d〈1mm的细根生物量占根系总生物量的51.9%,而根茎型植物d〈1mm的细根的生物量只占25.1%。根茎型植物的根生物量与地上生物量的比值为0.2,显著高于须根型湿地植物(0.1)。须根型湿地植物的根系表面积(6933cm^2/株)极显著地高于根茎型湿地植物(1897cm^2/株)。根茎型湿地植物根的平均寿命(46.6d)较须根型湿地植物根的平均寿命(34.8d)长。美人蕉的平均根数达1871条/株,根表面积达到22832cm^2/株,远较其他种高。  相似文献   

2.
Growth and efficiency of root respiration were investigated in Pisum sativum L. cv. Alaska and cv. Rondo. Plants were grown in culture solutions, either in symbiosis with Rhizobium leguminosanm , or with an abundant supply of nitrate or ammonium and completely lacking nodules. In comparison with plants utilizing nitrate or ammonium, Ni-fixing plants showed lower rates of dry matter and nitrogen accumulation, as well as lower rates of total and cytochrome-mediated root respiration. Rates of shoot dry matter accumulation and root respiration in plants utilizing ammonium were lower than in plants utilizing nitrate. The efficiency of root respiration was high in N2-fixing plants, as indicated by a low activity of the SHAM-sensitive, alternative, non-phosphorylating pathway. In nitrate and ammonium grown plants of cv. Alaska, the efficiency of root respiration was about the same, and in both cases lower than in N2-fixing plants. The efficiency of root respiration in non-symbiotically grown pea plants was generally higher than in many non-legumes. Comparison of the ATP costs of synthesis of root dry matter for different N-sources was complicated by large differences in relative growth rate of the root and in shoot to root ratio between N-treatments. A quantitative correction of the ATP production during synthesis of root dry matter for differences in shoot to root ratio and root maintenance respiration has been made. It is concluded that ATP costs of root dry matter production are highest in the case of N2-fixing plants. In plants utilizing ammonium, ATP costs of synthesis of root dry matter were slightly lower than in plants utilizing nitrate. The physiological significance of the alternative pathway in root metabolism is discussed in relation to the assimilation of different sources of nitrogen.  相似文献   

3.
A wastewater culture system was designed to study the root growth of eight species of wetland plants with two different root types. The system included a plastic barrel for holding the wastewater and a foam plate for holding the plant. The results indicated that the root growth of the plants with fibril roots was faster than that of the plants with rhizomatic roots. The species with fibril roots had higher root number (1349 per plant) than species with rhizomatic roots (549 per plant) after ten weeks of cultivation. The average root biomass of plants with fibril roots was 11.3 g per plant, whereas that of plants with rhizomatic roots was 7.4 g per plant. Fine root biomass of diameter ≤ 1 mm constituted 51.9% of the total root biomass in plants with fibril roots, whereas it accounted for only 25.1% in plants with rhizomatic roots. The root surface area of the plants with fibril roots (6933 cm2 per plant) was markedly larger than that of the species with rhizomatic roots (1897 cm2 per plant). The species with rhizomatic roots showed a longer root lifespan (46.6 days) than those with fibril roots (34.8 days).  相似文献   

4.
The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean ( Phaseolus vulgaris L.) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was unchanged by phosphorus treatment. This resulted in decreased lateral root density in phosphorus-deficient plants. The possible involvement of ethylene in growth responses to phosphorus deficiency was investigated by inhibiting endogenous ethylene production with amino-ethoxyvinylglycine (AVG) and aerating the root system with various concentrations of ethylene. Phosphorus deficiency doubled the root-to-shoot ratio, an effect which was suppressed by AVG and partially restored by exogenous ethylene. AVG increased lateral root density in phosphorus- deficient plants but reduced it in phosphorus-sufficient plants. These responses could be reversed by exogenous ethylene, suggesting ethylene involvement in the regulation of main root extension and lateral root spacing. Phosphorus-deficient roots produced twice as much ethylene per g dry matter as phosphorus-sufficient roots. Enhanced ethylene production and altered ethylene sensitivity in phosphorus-deficient plants may be responsible for root responses to phosphorus deficiency.  相似文献   

5.
The fertility of plants from wheat anther culture was studied. It was found that one half of the 36 plants with diploid root tips didn't set seeds at all, and that 41 of the 42 plants with haploid root tips were completely sterile. It was surprising that sterility was so widely distributed even among the plants with diploid root tips.  相似文献   

6.
Addition of abscisic acid (ABA) to the nutrient solution increased the root to shoot ratio of hydroponically-grown cauliflower plants by reducing the dry weight of the shoot and increasing that of the root. At concentrations higher than 10–7 M, ABA increased root branching and root hair formation. Root extension was inhibited in plants kept continuously in solutions containing high ABA concentrations but following removal from the ABA solution root elongation was increased in comparison with plants given no ABA treatment. This elongation was greatest in plants with increased root branching caused by higher ABA concentrations.  相似文献   

7.
The objective of this study was to test the hypothesis that fibrous-root plants and rhizomatic-root plants are characterized by different root morphologies, root growth and distribution, and contaminant removal capabilities. Four fibrous-root and four rhizomatic-root wetland plants were studied in mono-cultured microcosms which received wastewater. Fibrous-root plants had significantly greater (P < 0.05) small-size root (diameter ≤ 1 mm) biomass and a larger (P < 0.05) root surface area per plant than the rhizomatic-root plants and exhibited accelerated growth in both shoots and roots compared to the rhizomatic-root plants. Fibrous-root plants developed the majority of their root biomass increment within a shallower gravel medium than the rhizomatic-root plants. All plants demonstrated fast root biomass growth from July to September. The wetland microcosms planted with fibrous-root plants showed significantly higher (P < 0.05) ammonium-nitrogen (NH4-N) and nitrate-nitrogen (NO3-N) removal rates from July to December than those planted with the rhizomatic-root plants. These results suggest that root characteristics of wetland plants, which are related to their shoot and root growth, root distribution, and decontamination ability, can be used in the selection of wetland plants with a higher contaminant removal capacity and in the construction of a multi-species wetland plant community. Handling editor: S. M. Thomaz  相似文献   

8.
河西走廊中部两种荒漠植物根系构型特征   总被引:3,自引:0,他引:3  
在河西走廊中部,采用挖掘法挖取红砂和白刺根系,应用拓扑学与分形理论分析了根系构型的特征.结果表明: 2种荒漠植物根系的拓扑指数均较小,根系分支模式均近似为叉状分支结构.红砂和白刺根系具有较好的分形特征,其分形维数分别为(1.18±0.04)和(1.36±0.06);分形维数、分形丰度与根系平均连接长度均呈显著正相关.2种荒漠植物根系的平均连接长度均较大,以扩大植物的有效营养空间,从而适应干旱贫瘠的土壤环境.2种荒漠植物根系分支前的横截面积等于根系分支后的横截面积之和,验证了Leonardo da Vinci法则.对17个根系构型参数进行主成分分析,根系拓扑指数、根系连接数量、逐步分支率和根系直径4个根系构型参数能很好地表示2种荒漠植物根系构型特征.  相似文献   

9.
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。  相似文献   

10.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

11.
Pruning or total removal of in vitro formed roots of grape (Vitis vinifera L.) plantlets at planting offered considerable ease and time economy compared to control plantlets with intact roots. The ex vitro establishment was unaffected by the practice with 90% or higher establishment in each treatment. When observed at 4 weeks from planting, growth was slightly affected by root pruning and significantly by root removal. However, both these treatments showed better adventitious root regeneration at the base compared to control plants, which showed elongation of in vitro formed roots with fewer new roots. Root pruning and root removal treatments reduced the influence of the number of in vitro formed roots on vigour of ex vitro plants since the number of new roots formed was independent of the roots initially present. Consequently, these plants showed more uniformity compared to control plants. With a better root system, root pruned plants showed faster subsequent growth. Root pruning at planting is recommended for easier handling and more uniform plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
13.
Pezeshki  S.R.  Santos  M.I. 《Photosynthetica》1998,35(3):381-390
Seedlings of baldcypress (Taxodium distichum L.) grown in sealed containers containing nutrient solution were subjected to root-zone oxygen deficiency, physical restriction, and the combined stresses in a greenhouse. After six weeks of treatments (Phase I), half of the plants were harvested. The remaining half were allowed to continue (Phase II) under various treatments except plants that had restricted roots were freed thus allowing free expansion of roots into the nutrient solution. Oxygen deficiency and root physical restriction inhibited plant gas exchange parameters. Net photosynthetic rate (PN) was significantly higher in aerated unrestricted root (AUR) plants than in aerated root restricted (AR) plants and in anaerobic root unrestricted (FUR) plants than in anaerobic root restricted (FR) plants. After Phase I, FUR plants' shoot and root biomasses were 57.0 and 30.6 % lower than those of AUR plants, and AUR plants showed 3.3 and 3.8 times greater shoot and root biomasses than the AR plants, respectively. During Phase II, PN recovered rapidly in plants under aerated conditions, but not in plants under anaerobic conditions. The removal of physical root restriction under both aerated and anaerobic conditions resulted in rapid shoot and root growth in seedlings. Hence, root restriction or root-zone anaerobiosis, reductions in plant gas exchange, and biomass production in baldcypress were closely interrelated. In addition, root release from restriction was related to the regain of photosynthetic activity and biomass growth. The results support the previously proposed source-sink feed-back inhibition of photosynthesis in plants subjected to root-zone oxygen deficiency or physical restriction.  相似文献   

14.
Vierheilig H  Lerat S  Piché Y 《Mycorrhiza》2003,13(3):167-170
The arbuscular mycorrhizal (AM) non-host plants mustard, sugar beet, lupin and the AM host plant cucumber were used as test plants. Cucumber plants were grown either in the absence of the AM fungus (AMF) Glomus mosseae or in a split-root system, with one side mycorrhizal and one side non-mycorrhizal. Root exudates of the AM non-host plants, the non-mycorrhizal cucumber plants and the mycorrhizal and the non-mycorrhizal side of the split-root system of mycorrhizal cucumber plants were collected and applied to cucumber plants inoculated with the AMF. Root exudates of non-mycorrhizal cucumber plants showed a significant stimulatory effect on root colonization, whereas root exudates from the mycorrhizal and the non-mycorrhizal sides of a split-root system of a mycorrhizal cucumber plant did not show this stimulatory effect and were even slightly inhibitory. Root exudates of the two AM non-host plants mustard and sugar beet significantly reduced root colonization in cucumber plants, whereas no such effect was observed when root exudates of the AM non-host plant lupin were applied.  相似文献   

15.
Ethylene is a strong controller of root development, and it has been suggested that it is involved in the increase of lateral root development in nutrient-rich soil patches (selective root placement). Here, this contention was tested by comparing selective root placement of an ethylene-insensitive transgenic tobacco (Nicotiana tabacum) genotype (Tetr) with that of wild-type (Wt) plants. Wt and Tetr plants were grown in pots with locally increased nitrate or phosphate concentrations, after which the root growth patterns were compared with those of plants grown in pots with homogeneous nutrient distribution. Tetr plants responded to nutrient patches in a similar way to Wt plants, by placing their roots preferentially at locations with higher nutrient content, and other aspects of plant morphology were also not greatly influenced by ethylene insensitivity. The response of both Wt and Tetr plants to high-nitrate patches was considerably stronger than to locally high phosphate, suggesting that the two responses are not linked in any functional or regulatory way. As the response to nutrient patches was similar in ethylene-sensing and ethylene-insensitive plants, it is concluded that selective root placement in response to nitrate or phosphate is, at least in tobacco, not mediated or modified by ethylene action.  相似文献   

16.
Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages.Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments.Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding.Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants.  相似文献   

17.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

18.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1986,57(3):353-360
Groundsel (Senecio vulgaris L.) was grown in sand culture ata range of nutrient concentrations. Except when nutrient deficiencywas severe, infection by the rust fungus Puccinia lagenophoraeCooke substantially reduced root dry weight but had little effecton root length. Thus, specific root length (SRL, cm root mg–1d. wt) was significantly increased in rust-infected plants.The inhibition of root dry weight caused by rust infection wasmost pronounced late in development, especially after floweringwhen, in control plants, root elongation but not dry weightaccumulation ceased. In rusted plants, and in all plants subjectedto severe nutrient deficiency, dry weight accumulation in theroots ceased concurrently with root elongation. Late in developmentat high nutrient concentration adventitious roots with low SRLswere produced. However, infection did not modify the productionof such roots and increases in SRL could not be attributed tochanges in any single type of root. There was an inverse relationship between SRL and root diameter.This relationship was unaffected by rust infection whilst nutrientdeficiency changed only its intercept: at a given SRL rootsof nutrient stressed plants were thinner than those of plantswith adequate nutrient supply. Thus, the smaller diameter ofroots of nutrient-stressed plants occurred independently ofmeasured changes in SRL but, in the absence of nutrient stress,the decrease in root diameter caused by rust was closely relatedto increases in SRL. Changes in the root: length relationships in rusted plants mayhave important implications for root activity in the field.In view of the reported changes in SRL, inhibition of root growthin terms of dry weight may be a poor indicator of potentialchanges in activity. Senecio vulgaris, rust infection, nutrient deficiency, root weight: length ratio, root diameter  相似文献   

19.
Invasive species have profound negative impacts on native ranges. Unraveling the mechanisms employed by invasive plant species is crucial to controlling invasions. One important approach that invasive plants use to outcompete native plants is to disrupt mutualistic interactions between native roots and mycorrhizal fungi. However, it remains unclear how differences in the competitive ability of invasive plants affect native plant associations with mycorrhizae. Here, we examined how a native plant, Xanthium strumarium, responds to invasive plants that differed in competitive abilities (i.e., as represented by aboveground plant biomass) by measuring changes in root nitrogen concentration (root nutrient acquisition) and mycorrhizal colonization rate. We found that both root nitrogen concentration and mycorrhizal colonization rate in the native plant were reduced by invasive plants. The change in mycorrhizal colonization rate of the native plant was negatively correlated with both aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant in monocultures relative to mixed plantings. In contrast, the change in root nitrogen concentration of the native plant was positively correlated with aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant. When we compared the changes in mycorrhizal colonization rate and root nitrogen concentration in the native plant grown in monocultures with those of native plants grown with invasive plants, we observed a significant tradeoff. Our study shows that invasive plants can suppress native plants by reducing root nutrient acquisition rather than by disrupting symbiotic mycorrhizal associations, a novel finding likely attributable to a low dependence of the native plant on mycorrhizal fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号