首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary In Fig. 1 we have reproduced the action spectrum of photomorphogenesis in fern gametophytes (Dryopteris filix-mas (L.) Schott). The morphogenetic index L/W is shown as a function of wavelength (L=length, W=maximal width of the protonema). In experiments in which simultaneous irradiation with red and far-red was applied it has been shown (Fig. 2) that the effect of red light (lowering of the L/W-index) can be nullified by a simultaneous application of a suitable quantum flux density of far-red light. This fact means that the effects of red and far-red light on morphogenesis as measured by the L/W-index (Fig. 1) can be attributed exclusively to phytochrome.The strong morphogenetic effect of short wavelenth visible (=blue) light (strong lowering of the L/W-index) cannot be influenced by simultaneously applied far-red light (Fig. 4), whereas red light cancels the effect of blue light to a certain extent as measured by the L/W-index (Fig. 5). It has been concluded that the effect of blue light is due to a photoreceptor other than phytochrome, probably a flavoprotein. The antagonism between blue and red can be understood if we assume that the phytochrome-mediated growth at the tip of the apical cell of the protonema (e.g. Etzold, 1965) is fully promoted by P730 only at a high relative concentration of P730. The low relative concentration of P730 under far-red light is too low to counteract significantly the blue light dependent response. Blue light initiates isodiametric growth of the apical cell instead of tip growth (Mohr, 1965). Under far-red light (a low level of P730) growth of the apical cell seems to be restricted to the extreme tip of the apical cell. Slender protonemas with a high L/W-index are the result. Under red light (a high level of P730) the growing zone of the apical cell is somewhat broader. As a consequence the protonemas are broader and the L/W-index is lowered.  相似文献   

2.
In the course of recent efforts to identify new potential antiproliferative active principles, Salvia leriifolia extracts and isolated constituents were evaluated for their cytotoxic activity against a panel of human cancer cell lines, including renal adenocarcinoma (ACHN), amelanotic melanoma (C32), colorectal adenocarcinoma (Caco‐2), lung large cell carcinoma (COR‐L23), malignant melanoma (A375), lung carcinoma (A549), and hepatocellular carcinoma (Huh‐7D12) cells. The hexane and CH2Cl2 extracts showed the strongest cytotoxic activity against the C32 cell line with IC50 values of 11.2 and 13.6 μg/ml, respectively, and the AcOEt extract was the most active extract against the COR‐L23 cell line (IC50 of 20.9 μg/ml). Buchariol, a sesquiterpene obtained by biofractionation of the CH2Cl2 extract, exhibited a higher activity than the positive control vinblastine against the C32 and A549 cell lines (IC50 values of 2.1 and 12.6 μM , resp.). Interesting results were also obtained for naringenin, a flavonoid isolated from the AcOEt extract, which exhibited a strong cytotoxic activity against the C32, LNCaP, and COR‐L23 cell lines (IC50 values of 2.2, 7.7, and 33.4 μM , resp.), compared to vinblastine (IC50 values of 3.3, 32.2, 50.0 μM , resp.). None of the tested compounds affected the proliferation of skin fibroblasts (142BR), suggesting a selective activity against tumor cells.  相似文献   

3.
不同光质LED光源对草莓光合特性、产量及品质的影响   总被引:12,自引:0,他引:12  
以‘妙香7号’草莓品种为材料,利用LED精量调制光源,设红光、蓝光、黄光、白光、红/蓝/黄(7/2/1)、红/蓝(7/2) 5个处理,以白光为对照,测定了草莓叶片的光合与荧光参数、色素含量、果实产量、品质和根系活力指标,研究 500 μmol·m-2·s-1光强下不同光质处理对草莓光合特性、果实产量及品质的影响.结果表明: 红光处理有利于提高草莓叶片的净光合速率与蒸腾速率,而蓝光有减弱作用;气孔导度与胞间CO2浓度均以蓝光处理效果最为显著.叶绿素荧光参数(Fo、Fm、ΦPSⅡ)均在红光处理下最大,而Fv/Fm、Fv/Fo、Fm/Fo均在红/蓝/黄处理下最大;红/蓝/黄处理下草莓色素含量、果实产量和根系活力均显著高于其他处理.红光处理的可溶性固形物和维生素C含量均最高,且与红/蓝/黄处理差异不显著;蓝光处理有利于提高可滴定酸和蛋白质含量,而红/蓝/黄处理的固酸比最大.红/蓝/黄处理最有利于增加光合色素含量,提高果实产量,促进部分品质改善.  相似文献   

4.
Five strawberry (Fragaria sp.) and five raspberry (Rubus ideaus L.) cultivars were evaluated for resistance to two spotted spider mite (Tetranychus urticae Koch.). Two methods of assessing the development of two spotted mite populations using detached leaves were compared. The number of eggs laid and mites which developed were compared. The strawberry cvs Hapil and Pegasus had significantly greater development of two spotted mite populations than the cvs Rhapsody, Symphony and Elsanta. The raspberry cv. Joan Squires had higher populations of two spotted mite whilst the raspberry cv. Leo the least, when compared with cvs Glen Clova, Glen Moy and Glen Prosen. Differences were observed in oviposition sites and mite distribution when comparing raspberries with strawberries. The method of assessing the populations development of two spotted mite which involved maintaining the cut leaf stem in water may be of potential use for studying population dynamics of both two spotted mite and possible predators over extended periods of time.  相似文献   

5.

The rice (Oryza sativa L.) BAHD acyltransferase gene OsAt10 affects growth and metabolism of cells and regulates cell response to environmental stress. However, influence of the OsAt10 gene on low-temperature stress tolerance has not been evaluated in plant cells. Here, cell suspension cultures of plant species Arabidopsis (Arabidopsis thaliana L.), cotton (Gossypium hirsutum L.), white pine (Pinus strobus L.), and rice (Oryza sativa L.) were used to generate transgenic cell lines via Agrobacterium tumefaciens-mediated genetic transformation to examine the effects of OsAt10 on cold stress tolerance. OsAt10 transgenic cell lines of A. thaliana, G. hirsutum, P. strobus, and O. sativa were confirmed by molecular analyses including Southern blotting ND northern blotting, following by physiological and biochemical analyses under cold stress. The experimental results demonstrated that growth rate, cell viability, lipid peroxidation, ion leakage, antioxidative enzyme activity, polyamines level, and cell morphology were changed in transgenic cells under cold stress, compared to the controls. In transgenic A. thaliana cells, overexpression of the OsAt10 gene increases expression of polyamines biosynthesis genes under cold stress. In transgenic A. thaliana plants, overexpression of the OsAt10 gene increased cold stress tolerance by regulating expression of stress marker genes, TBARS content, ion leakage level, antioxidant enzymes activity, and polyamines content, indicating that the OsAt10 gene could be economically important for improving low-temperature stress tolerance in plants.

  相似文献   

6.
Mayer SM  Beale SI 《Plant physiology》1990,94(3):1365-1375
Chlorophyll synthesis in Euglena, as in higher plants, occurs only in the light. The key chlorophyll precursor, δ-aminolevulinic acid (ALA), is formed in Euglena, as in plants, from glutamate in a reaction sequence catalyzed by three enzymes and requiring tRNAGlu. ALA formation from glutamate occurs in extracts of light-grown Euglena cells, but activity is very low in dark-grown cell extracts. Cells grown in either red (650-700 nanometers) or blue (400-480 nanometers) light yielded in vitro activity, but neither red nor blue light alone induced activity as high as that induced by white light or red and blue light together, at equal total fluence rates. Levels of the individual enzymes and the required tRNA were measured in cell extracts of light- and dark-grown cells. tRNA capable of being charged with glutamate was approximately equally abundant in extracts of light- and dark-grown cells. tRNA capable of supporting ALA synthesis was approximately three times more abundant in extracts of light-grown cells than in dark-grown cell extracts. Total glutamyl-tRNA synthetase activity was nearly twice as high in extracts of light-grown cells as in dark-grown cell extracts. However, extracts of both light- and dark-grown cells were able to charge tRNAGlu isolated from light-grown cells to form glutamyl-tRNA that could function as substrate for ALA synthesis. Glutamyl-tRNA reductase, which catalyzes pyridine nucleotide-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde (GSA), was approximately fourfold greater in extracts of light-grown cells than in dark-grown cell extracts. GSA aminotransferase activity was detectable only in extracts of light-grown cells. These results indicate that both the tRNA and enzymes required for ALA synthesis from glutamate are regulated by light in Euglena. The results further suggest that ALA formation from glutamate in dark-grown Euglena cells may be limited by the absence of GSA aminotransferase activity.  相似文献   

7.
Unrooted strawberry cv. `Akihime' shoots with three leaves obtained from standard mixotrophic cultures were cultured in the ``Culture Pack'-rockwool system with sugar-free MS medium under CO2-enriched condition. To examine the effect of superbright red and blue light-emitting diodes (LEDs) on in vitro growth of plantlets, these cultures were placed in an incubator, ``LED PACK', with either red LEDs, red LEDs1blue LEDs or blue LEDs light source. To clarify the optimum blue and red LED ratio, cultures were placed in ``LED PACK 3' under LED light source with either 100, 90, 80, or 70% red + 0, 10, 20, 30% blue, respectively, and also under standard heterotrophic conditions. To determine the effects of irradiation level, cultures were grown under 90% red LEDs + 10% blue LEDs at 45, 60 or 75 mol m–2 s–1 . Plantlet growth was best at 70% red + 30% blue LEDs. The optimal light intensity was 60 mol m–2 s–1. Growth after transfer to soil was also best after in vitro culture with plantlets produced were 70% red LEDs + 30% blue LEDs.  相似文献   

8.
In the present study we report some preliminary results concerning the evaluation of antiproliferative activity on murine myeloma cells (P3X63-Ag8.653) of crude extracts of two common lichen species, Evernia prunastri and Xanthoria parietina. The results were evaluated by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test, which is commonly used to assess the activity of living cells through mitochondrial dehydrogenases. They indicated that extracts of E. prunastri had no effect, while those of X. parietina significantly affected murine myeloma cell proliferation, with a reduction down to 75% for methanolic extracts. This opens perspectives for deeper investigations extended also to other mammalian cell lines.  相似文献   

9.
10.
Growth rates in terms of area increase per 30 min were measured in flat thalli of several seaweed, species by means of computer-assisted image analysis, at 12 h light per day and a photon fluence rate of 20 μmol · m-2· s?1. Light fields included white fluorescent, imitated underwater, blue, green, and red light. In the green alga Ulva pseudocurvata Koeman et Hoek, blue light caused an immediate reduction of thallus area and growth rate after the onset of light, whereas green light and red light resulted in an initial peak in growth rate followed by inhibition 60 min after the onset of light. More growth was observed in darkness than in blue light in U. pseudocurvata. All brown and red algae tested, with Laminaria saccharina (L.) Lamour. and Palmaria palmata Stackh. as the main investigated species, grew faster during the day than during the night, irrespective of light quality during the main light phase. The upper intertidal red alga Porphyra umbilicalis (L.) J. Ag. achieved most of its thallus expansion per 24 h during the first 3 h of the light phase, with maximum growth rates of 2–3% increase in area per hour. Maximal growth rates were 0.7% for juvenile laminarian sporophytes and were lower than this in Palmaria palmata and other perennial red algae. The temporary growth inhibition by light in Ulva pseudocurvata suggests photomorphogenetic events, similar to the kinetics of stem elongation in higher plant seedlings after blue or red light pulses in darkness.  相似文献   

11.

Background  

We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15°C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants.  相似文献   

12.
Although the spectral quality of light in the ocean varies considerably with depth, the effect of light quality on different physiological processes in marine phytoplankton remains largely unknown. In cases where experiments are performed under full spectral irradiance, the meaning of these experiments in situ is thus unclear. In this study, we determined whether variations in spectral quality affected the sinking rates of marine diatoms. Semicontinuous batch cultures of Thalassiosira weissflogii (Gru.) Fryxell et Hasle and Ditylum brightwellii (t. West) Grunow in Van Huerk were grown under continuous red, white, or blue light. For T. weissflogii, sinking rates (SETCOL method) were twice as high (~0.2 m·d?1)for cells grown under red light as for cells grown under white or blue light (~0.08 m·d?1), but there were no significant differences in carbohydrate content (~105 fg·μm?3) or silica content (~ 17 fg·μ?3) to account for the difference in sinking rates. Thalassiosira weissflogii grown under blue light was significantly smaller (495 μm3) than cells grown under red light (661 μm3), which could contribute to its reduced sinking rate. However, cells grown under white light were similar in size to those grown under red light but had sinking rates not different from those of cells grown under blue light, indicating the involvement of factors other than size. There were no significant differences in sinking rate (~0.054 m·d?1) or silica content (~20 fg·μm?3) in D. brightwellii grown under red, white, or blue light, but cells grown under red light were significantly (20%) larger and contained significantly (20%) more carbohydrate per μm3 than cells grown under white or blue light. Spectral quality had no consistent effect on sinking rate, biochemical composition (carbohydrate or silica content), or cell volume in the two diatoms studied. The similarity in sinking rate of cells grown under white light compared to those grown under blue light supports the ecological validity of sinking rate studies done under white light.  相似文献   

13.
In contrast to the strawberry fruits, strawberry leaves as a source of bioactive compounds with potentially beneficial biological effects have been largely overlooked. In this study we examined direct, dose-dependent effects of wild strawberry (Fragaria vesca, L.) leaves aqueous extract, in two experimental models and animal species, the isolated guinea pig hearts and rat aortic rings. Vasodilatory potential of the wild strawberry leaves extract was compared with vasodilatory activity of aqueous extract of hawthorn (Crataegus oxycantha, L) leaves with flowers, which can be regarded as a reference plant extract with a marked vasodilatory activity.The extracts were analysed by their “phenolic fingerprints”, total phenolic content and antioxidative capacity. Their vasodilatory activity was determined and compared in the isolated aortic rings from 24 rats that were exposed to the extracts doses of 0.06, 0.6, 6, and 60 mg/100 ml. Both extracts induced similar, dose-dependent vasodilation. Maximal relaxation was 72.2±4.4% and 81.3±4.5%, induced by the strawberry and hawthorn extract, respectively. To determine vasodilatory mechanisms of the wild strawberry leaves extract, endothelium-denuded and intact rings exposed to nitric oxide (NO) synthase inhibitor l-NAME or cyclooxygenase inhibitor indomethacin were used. Removal of the endothelium prevented and exposure to l-NAME or indomethacin strongly diminished the vasodilatatory response to the extract. In the isolated hearts (n=12), the wild strawberry extract was applied at concentrations of 0.06, 0.18, 0.6, and 1.8 mg/100 ml. Each dose was perfused for 3.5 min with 15 min of washout periods. Heart contractility, electrophysiological activity, coronary flow and oxygen consumption were continuously monitored. The extract did not significantly affect heart rate and contractility, main parameters of the cardiac action that determine oxygen demands, while coronary flow increased up to 45% over control value with a simultaneous decrease of oxygen extraction by 34%.The results indicate that the aqueous extract of wild strawberry leaves is a direct, endothelium-dependent vasodilator, action of which is mediated by NO and cyclooxygenase products and which potency is similar to that of the hawthorn aqueous extract.  相似文献   

14.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

15.
Comparative isoenergetic action spectra of net photosynthesis for intact, current year foliage of five tree species were determined from 400 to 710 nm by CO2 exchange analysis. The blue (400 to 500 nm) peak of net photosynthetic activity for the green broadleaves of red alder (Alnus rubra Bong.) was reduced to a plateau for the green needle-leaves of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) and Sitka spruce (Picea sitchensis [Bong.] Carr.), a shoulder for the blue-green needles of Colorado spruce (Picea pungens Engelm.), and a reduced shoulder for the blue-white needles of Blue spruce (Picea pungens var. hoospii). These differences were attributable neither to a differential blue light stimulation of photorespiration nor to a differential presence of a nonplastid screening pigment. The conifers all had similar carotenoid-chlorophyll ratios, with approximately 50% more carotenoid relative to chlorophyll as compared to red alder. Blue light absorption and low efficiency of energy transfer by the carotenoids probably accounts for the low net photosynthetic activity of the green conifers in blue light as compared to red alder. Leaf form per se (broad versus needle) had no distinguishable influence on these results.  相似文献   

16.
The high photosynthetic activity (O2 production and CO2 consumption) ofAcetabularia mediterranea Lamour. (=A. acetabulum (L.) Silva) characteristic of cells cultured in white light decreases slowly when cells are kept in continuous red light, and is less than 20% of the original activity after three weeks. Subsequent blue irradiation restores the original activity completely within 3–5 d. The polypeptide composition of the thylakoids from cells grown in either red or blue light and after transfer from red to blue light was analyzed mainly with regards to photosystem II (PSII). The P700-containing reaction-centre complex of photosystem I, CPI, showed only minor quantitative alterations as a consequence of the growth-light quality, which correlated well with the activity of photosystem I under these conditions. In PSII, no drastic changes occurred in the quantity of the reaction-centre components D1 (herbicide-binding polypeptide) and D2, as determined by immunoblots. Likewise, the proteins associated with the water-splitting apparatus did not change detectably in thylakoids from red- or blue-light-treated cells (the 16-kDa component could not be found inAcetabularia thylakoids). The level of the major light-harvesting complex was completely unaffected by the light quality. In contrast, the quantities of the chlorophyll a-protein complexes of the core antenna, CP43 and CP47 (and probably CP29), changed, with kinetics similar to those of total photosynthetic activity. We postulate that the function of the PSII antenna became increasingly impaired in the absence of blue light (i.e. in red light), while blue light had a restoring effect. The peripheral antenna, comprising the light-harvesting complexes, is probably functionally connected with the reaction-centre chlorophylls via the core antenna chlorophyll-protein complexes (CP43, CP47 and probably CP29). A deficiency of these complexes would lead to uncoupling of antenna and reaction centre in the majority of PSII complexes after long periods of red-light treatment.  相似文献   

17.
K. Zandomeni  P. Schopfer 《Protoplasma》1993,173(3-4):103-112
Summary The effects of red and blue light on the orientation of cortical microtubules (MTs) underneath the outer epidermal wall of maize (Zea mays L.) coleoptiles were investigated with immunofluorescent techniques. The epidermal cells of dark-grown coleoptiles demonstrated an irregular pattern of regions of parallel MTs with a random distribution of orientations. This pattern could be changed into a uniformly transverse MT alignment with respect to the long cell axis by 1 h of irradiation with red light. This response was transient as the MTs spontaneously shifted into a longitudinal orientation after 1–2 h of continued irradiation. Induction/reversion experiments with short red and far-red light pulses demonstrated the involvement of phytochrome in this response. In contrast to red light, irradiation with blue light induced a stable longitudinal MT alignment which was established within 10 min. The blue-light response could not be affected by subsequent irradiations with red or far-red light indicating the involvement of a separate blue-light photoreceptor which antagonizes the effect of phytochrome. In mixed light treatments with red and blue light, the blue-light photoreceptor always dominated over phytochrome which exhibited an apparently less stable influence on MT orientation. Long-term irradiations with red or blue light up to 6 h did not reveal any rhythmic changes of MT orientation that could be related to the rhythmicity of helicoidal cell-wall structure. Subapical segments isolated from dark-grown coleoptiles maintained a longitudinal MT arrangement even in red light indicating that the responsiveness to phytochrome was lost upon isolation. Conversely auxin induced a transverse MT arrangement in isolated segments even in blue light, indicating that the responsiveness to blue-light photoreceptor was eliminated by the hormone. These complex interactions are discussed in the context of current hypotheses on the functional significance of MT reorientations for cell development.Abbreviations MT cortical microtubule - Pr, Pfr red and far-red absorbing form of phytochrome  相似文献   

18.
Tomato (Solanum lycopersicum) is rich in anthocyanins, which are polyphenolic pigments. This study aimed to analyze and characterize the anthocyanin composition in cultivated blue tomato in Japan. The extracts of peel, seed, and pulp of tomatoes were purified following which anthocyanins and lycopene contents were analyzed using high-performance liquid chromatography and electrospray ionization mass spectrometry. Eleven types of anthocyanins were identified, including delphinidin, petunidin, and malvidin. Further, the antioxidant activity of anthocyanins was evaluated using 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical quenching assays and electron spin resonance. “Blue tomato” extracts exert antioxidant activity. Thus, we showed that petunidin was present in the “blue tomato” peel while lycopene was present in the peel and pulp. Additionally, the blue tomato peel extract was found to significantly inhibit H2O2-induced cell death in vitro. This is the first study on cell protective effects of Japanese blue tomato extract and petunidin in murine photoreceptor cells.  相似文献   

19.
The influence of blue, red and white light and gibberellic acid (GA3) on gibberellin-like activity in tissue extracts of leaves, stems and roots was investigated during growth of pea seedlings (Pisum salivum L. cv. Bördi). Higher GA-like activity was found in leaves and stems of pea plants that were growing in blue light than in those under red or white light. Patterns of change of activity were different in leaves, stems and roots, and in GA3-treated plants.  相似文献   

20.
Summary The mode of phytochrome control of elongation growth was studied in fully-green strawberry (Fragaria x Ananassa Duch.) plants. Petiole growth showed two distinct types of response to light. In one, the end-of-day response, petioles were lengthened by low-intensity far-red irradiation for 1 h immediately following the 8 h photoperiod. The response was little or no greater with prolonged exposure and less when the start of far-red was delayed. It was already evident in the first leaf to emerge after treatment began. With the development of successive leaves a second, photoperiodic, type of response appeared, in which petioles lengthened following only prolonged exposure to red, far-red, mixtures of the two, or tungsten lighting, all at low levels of intensity. As with the inhibition of flowering in previous experiments, irradiation with red light during the second half of the otherwise long dark period gave the greatest response.Abbreviations and Symbols FR far-red light - HIR high irradiance response - R red light - Pr phytochrome in the red light absorbing form - Pfr phytochrome in the far-red light absorbing form - SDP short-day plant - LDP long-day plant - PAR photosynthetically active radiation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号