首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our knowledge of iron homeostasis has increased steadily over the last two decades; much of this has been made possible through the study of animal models of iron-related disease. Analysis of transgenic mice with deletions or perturbations in genes known to be involved in systemic or local regulation of iron metabolism has been particularly informative. The effect of these genes on iron accumulation and hepcidin regulation is traditionally compared with wildtype mice fed a high iron diet, most often a 2% carbonyl iron diet. Recent studies have indicated that a very high iron diet could be detrimental to the health of the mice and could potentially affect homeostasis of other metals, for example zinc and copper. We analyzed mice fed a diet containing either 0.25%, 0.5%, 1% or 2% carbonyl iron for two weeks and compared them with mice on a control diet. Our results indicate that a 0.25% carbonyl iron diet is sufficient to induce maximal hepatic hepcidin response. Importantly these results also demonstrate that in a chronic setting of iron administration, the amount of excess hepatic iron may not further influence hepcidin regulation and that expression of hepcidin plateaus at lower hepatic iron levels. These studies provide further insights into the regulation of this important hormone.  相似文献   

2.
The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.  相似文献   

3.
Hepatic expression of iron homeostasis genes and serum iron parameters predict the success of immunosuppression withdrawal following clinical liver transplantation, a phenomenon known as spontaneous operational tolerance. In experimental animal models, spontaneous liver allograft tolerance is established through a process that requires intra-hepatic lymphocyte activation and deletion. Our aim was to determine if changes in systemic iron status regulate intra-hepatic lymphocyte responses. We used a murine model of lymphocyte-mediated acute liver inflammation induced by Concanavalin A (ConA) injection employing mice fed with an iron-deficient (IrDef) or an iron-balanced diet (IrRepl). While the mild iron deficiency induced by the IrDef diet did not significantly modify the steady state immune cell repertoire and systemic cytokine levels, it significantly dampened inflammatory liver damage after ConA challenge. These findings were associated with a marked decrease in T cell and NKT cell activation following ConA injection in IrDef mice. The decreased liver injury observed in IrDef mice was independent from changes in the gut microflora, and was replicated employing an iron specific chelator that did not modify intra-hepatic hepcidin secretion. Furthermore, low-dose iron chelation markedly impaired the activation of isolated T cells in vitro. All together, these results suggest that small changes in iron homeostasis can have a major effect in the regulation of intra-hepatic lymphocyte mediated responses.  相似文献   

4.
Peroxisomes are organelles, abundant in the liver, involved in a variety of cellular functions, including fatty acid metabolism, plasmalogen synthesis and metabolism of reactive oxygen species. Several inherited disorders are associated with peroxisomal dysfunction; increasingly many are associated with hepatic pathologies. The liver plays a principal role in regulation of iron metabolism. In this study we examined the possibility of a relationship between iron homeostasis and peroxisomal integrity.We examined the effect of deleting Pex13 in mouse liver on systemic iron homeostasis. We also used siRNA-mediated knock-down of PEX13 in a human hepatoma cell line (HepG2/C3A) to elucidate the mechanisms of PEX13-mediated regulation of hepcidin.We demonstrate that transgenic mice lacking hepatocyte Pex13 have defects in systemic iron homeostasis. The ablation of Pex13 expression in hepatocytes leads to a significant reduction in hepatic hepcidin levels. Our results also demonstrate that a deficiency of PEX13 gene expression in HepG2/C3A cells leads to decreased hepcidin expression, which is mediated through an increase in the signalling protein SMAD7, and endoplasmic reticulum (ER) stress.This study identifies a novel role for a protein involved in maintaining peroxisomal integrity and function in iron homeostasis. Loss of Pex13, a protein important for peroxisomal function, in hepatocytes leads to a significant increase in ER stress, which if unresolved, can affect liver function. The results from this study have implications for the management of patients with peroxisomal disorders and the liver-related complications they may develop.  相似文献   

5.
Iron homeostasis depends on adequate dietary copper but the mechanisms are unknown. Mice (Mus musculus) and rat (Rattus norvegicus) offspring were compared to determine the effect of dietary copper deficiency (Cu-) on iron status of plasma, liver, brain and intestine. Holtzman rat and Hsd:ICR (CD-1) outbred albino mouse dams were fed a Cu- diet and drank deionized water or Cu supplemented water. Offspring were sampled at time points between postnatal ages 13 and 32. Cu- rat and mouse pups were both anemic, but only rat pups had lower plasma and brain iron levels. Plasma iron was lower throughout the suckling period in Cu- rats but not Cu- mice. Cu- mice derived from dams restricted of Cu only during lactation were also severely anemic without hypoferremia. Intestinal metal analysis confirmed that Cu- pups had major reductions in intestinal concentration of Cu, increased Fe, and normal Zn. However, whole mouse (less the intestine) analysis demonstrated normal content of Fe indicating that the limitation in iron transport by intestinal hephaestin had no consequence to total iron reserves of the mouse. Further research will be needed to determine the reason Cu- mice were anemic since the "ferroxidase" hypothesis does not explain this phenotype.  相似文献   

6.
The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism.  相似文献   

7.
The aim of this study was to identify genes that influence iron regulation under varying dietary iron availability. Male and female mice from 20+ BXD recombinant inbred strains were fed iron-poor or iron-adequate diets from weaning until 4 mo of age. At death, the spleen, liver, and blood were harvested for the measurement of hemoglobin, hematocrit, total iron binding capacity, transferrin saturation, and liver, spleen and plasma iron concentration. For each measure and diet, we found large, strain-related variability. A principal-components analysis (PCA) was performed on the strain means for the seven parameters under each dietary condition for each sex, followed by quantitative trait loci (QTL) analysis on the factors. Compared with the iron-adequate diet, iron deficiency altered the factor structure of the principal components. QTL analysis, combined with PosMed (a candidate gene searching system) published gene expression data and literature citations, identified seven candidate genes, Ptprd, Mdm1, Picalm, lip1, Tcerg1, Skp2, and Frzb based on PCA factor, diet, and sex. Expression of each of these is cis-regulated, significantly correlated with the corresponding PCA factor, and previously reported to regulate iron, directly or indirectly. We propose that polymorphisms in multiple genes underlie individual differences in iron regulation, especially in response to dietary iron challenge. This research shows that iron management is a highly complex trait, influenced by multiple genes. Systems genetics analysis of iron homeostasis holds promise for developing new methods for prevention and treatment of iron deficiency anemia and related diseases.  相似文献   

8.
Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.  相似文献   

9.
Cuprizone, copper chelator, treatment of mouse is a toxic model of multiple sclerosis (MS) in which oligodendrocyte death, demyelination and remyelination can be observed. Understanding T and B cell subset as well as their cytokines involved in MS pathogenesis still requires further scrutiny to better understand immune component of MS. The study presented here, aimed to evaluate relevant cytokines, lymphocytes, and gene expressions profiles during demyelination and remyelination in the cuprizone mouse model of MS. Eighty male C57BL/6J mice fed with 0.2% cuprizone for eight weeks. Cuprizone has been removed from the diet in the following eight weeks. Cuprizone treated and control mice sacrificed biweekly, and corpus callosum of the brain was investigated by staining. Lymphocyte cells of mice analyzed by flow cytometry with CD3e, CD11b, CD19, CD80, CD86, CD4, CD25 and FOXP3 antibodies. IFN-gamma, IL-1alpha, IL-2, IL-5, IL-6, IL-10, IL-17, TNF-alpha cytokines were analyzed in plasma samples. Neuregulin 1 (Nrg1), ciliary neurotrophic factor (Cntf) and C-X-C chemokine receptor type 4 (Cxcr4) gene expressions in corpus callosum sections of the mice brain were quantified. Histochemistry analysis showed that demyelination began at the fourth week of cuprizone administration and total demyelination occurred at the twelfth week in chronic model. Remyelination occurred at the fourth week of following withdrawal of cuprizone from diet. The level of mature and activated T cells, regulatory T cells, T helper cells and mature B cells increased during demyelination and decreased when cuprizone removed from diet. Further, both type 1 and type 2 cytokines together with the proinflammatory cytokines increased. The level of oligodendrocyte maturation and survival genes showed differential gene expression in parallel to that of demyelination and remyelination. In conclusion, for the first-time, involvement of both cellular immune response and antibody response as well as oligodendrocyte maturation and survival factors having role in demyelination and remyelination of cuprizone mouse model of MS have been shown.  相似文献   

10.
Vitamin A modulates inflammatory status, iron metabolism and erythropoiesis. Given that these factors modulate the expression of the hormone hepcidin (Hamp), we investigated the effect of vitamin A deficiency on molecular biomarkers of iron metabolism, the inflammatory response and the erythropoietic system. Five groups of male Wistar rats were treated: control (AIN-93G), the vitamin A-deficient (VAD) diet, the iron-deficient (FeD) diet, the vitamin A- and iron-deficient (VAFeD) diet or the diet with 12 mg atRA/kg diet replacing all-trans-retinyl palmitate by all-trans retinoic acid (atRA). Vitamin A deficiency reduced serum iron and transferrin saturation levels, increased spleen iron concentrations, reduced hepatic Hamp and kidney erythropoietin messenger RNA (mRNA) levels and up-regulated hepatic and spleen heme oxygenase-1 gene expression while reducing the liver HO-1 specific activity compared with the control. The FeD and VAFeD rats exhibited lower levels of serum iron and transferrin saturation, lower iron concentrations in tissues and lower hepatic Hamp mRNA levels compared with the control. The treatment with atRA resulted in lower serum iron and transferrin concentrations, an increased iron concentration in the liver, a decreased iron concentration in the spleen and in the gut, and decreased hepatic Hamp mRNA levels. In summary, these findings suggest that vitamin A deficiency leads to ineffective erythropoiesis by the down-regulation of renal erythropoietin expression in the kidney, resulting in erythrocyte malformation and the consequent accumulation of the heme group in the spleen. Vitamin A deficiency indirectly modulates systemic iron homeostasis by enhancing erythrophagocytosis of undifferentiated erythrocytes.  相似文献   

11.
The central role of the prion protein (PrP) in a family of fatal neurodegenerate diseases has garnered considerable research interest over the past two decades. Moreover, the role of PrP in neuronal development, as well as its apparent role in metal homeostasis, is increasingly of interest. The host-encoded form of the prion protein (PrP(C)) binds multiple copper atoms via its N-terminal domain and can influence brain copper and iron levels. The importance of PrP(C) to the regulation of brain metal homeostasis and metal distribution, however, is not fully understood. We therefore employed synchrotron-based X-ray fluorescence imaging to map the level and distributions of several key metals in the brains of mice that express different levels of PrP(C). Brain sections from wild-type, prion gene knockout (Prnp(-/-)) and PrP(C) over-expressing mice revealed striking variation in the levels of iron, copper, and even zinc in specific brain regions as a function of PrP(C) expression. Our results indicate that one important function of PrP(C) may be to regulate the amount and distribution of specific metals within the central nervous system. This raises the possibility that PrP(C) levels, or its activity, might regulate the progression of diseases in which altered metal homeostasis is thought to play a pathogenic role such as Alzheimer's, Parkinson's and Wilson's diseases and disorders such as hemochromatosis.  相似文献   

12.
Disorders of iron metabolism are a significant problem primarily in young and old populations. In this study, We compared 1-year-old C57BL6/J mice on iron deficient, iron overload, or iron sufficient diets with two similarly aged genetic models of disturbed iron homeostasis, the sla (sex-linked anemia), and the ceruloplasmin knockout mice (Cp −/−) on iron sufficient diet. We found tissue specific changes in sla and nutritional iron deficiency including decreased liver Hamp1 expression and increased protein expression of the enterocyte basolateral iron transport components, hephaestin and ferroportin. In contrast, the Cp −/− mice did not show significantly increased Hamp1 expression despite increased liver iron suggesting that regulation is independent of liver iron levels. Together, these results suggest that older mice have a distinct response to alterations in iron metabolism and that age must be considered in future studies of iron metabolism.  相似文献   

13.
The objective of the present study was to investigate physiological effects of a marginal copper and iron supply on pigs. Therefore an experiment was conducted with 4 × 12 growing pigs of the crossbreed Pietrain × Deutsche Landrasse. The animals were fed for a period of 119 days with a diet poor of copper (1.5 mg Cu/kg diet) and/or poor of iron (35 mg Fe/kg diet). Control animals were supplied adequately with copper (4.8 mg Cu/kg diet) and iron (85 mg Fe/kg diet). The diet was given according to weight. After reaching an average weight of 102.6 ± 3.5 kg the animals were slaughtered. Due to the activity of the coerulplasmin and katalase enzyme and the haematological parameters, the supply of copper and iron could be classified as marginal. There was no interaction between copper deficiency and iron metabolism. The protein metabolism was unchanged. Low copper intake reduced the copper concentrations in serum, liver, muscle and backfat, and low iron intake reduced the iron concentration in serum, liver and muscle. Marginal copper and iron supply had no relevant effect on either food intake and growth performance or carcass characteristics and meat quality.  相似文献   

14.
Remyelination is disrupted in demyelinating diseases such as multiple sclerosis, but the underlying pathogenetic mechanisms are unclear. In this study, we employed the murine cuprizone model of demyelination, in which remyelination occurs after removal of the toxin from the diet, to examine the cellular and molecular changes during demyelination and remyelination. Microglia accumulated in the corpus callosum during weeks 2–4 of the cuprizone diet, and these cells remained activated 2 weeks after the change to the normal diet. To examine the role of microglia in remyelination, mice were treated with minocycline to inactivate these cells after cuprizone‐induced demyelination. Minocycline treatment reduced the number of CC1‐positive oligodendrocytes, as well as levels of myelin basic protein (MBP) and CNPase in the remyelination phase. The expression of CNTF mRNA in the corpus callosum increased after 4 weeks on the cuprizone diet and remained high 2 weeks after the change to the normal diet. Minocycline suppressed CNTF expression during the remyelination phase on the normal diet. Primary culture experiments showed that CNTF was produced by microglia in addition to astrocytes. In vitro, CNTF directly affected the differentiation of oligodendrocytic cells. These findings suggest that minocycline reduces remyelination by suppressing CNTF expression by microglia after cuprizone‐induced demyelination.  相似文献   

15.
随着研究的深入,脑铁代谢相关分子突变引起的疾病越来越多的被人们所认识。脑铁代谢紊乱可能是神经退行性疾病的发病原因之一。对脑铁代谢机理的认识将为预防和治疗脑铁代谢紊乱相关疾病提供重要的理论根据。对脑铁代谢的过程,脑铁代谢的相关分子以及这些分子对脑内铁稳态的调控作用作一介绍。  相似文献   

16.
The pathophysiological mechanisms of progressive demyelinating disorders including multiple sclerosis are incompletely understood. Increasing evidence indicates a role for trace metals in the progression of several neurodegenerative disorders. The study of Skogholt disease, a recently discovered demyelinating disease affecting both the central and peripheral nervous system, might shed some light on the mechanisms underlying demyelination. Cerebrospinal fluid iron and copper concentrations are about four times higher in Skogholt patients than in controls. The transit into cerebrospinal fluid of these elements from blood probably occurs in protein bound form. We hypothesize that exchangeable fractions of iron and copper are further transferred from cerebrospinal fluid into myelin, thereby contributing to the pathogenesis of demyelination. Free or weakly bound iron and copper ions may exert their toxic action on myelin by catalyzing production of oxygen radicals. Similarities to demyelinating processes in multiple sclerosis and other myelinopathies are discussed.  相似文献   

17.
Intestinal epithelial cells and reticuloendothelial macrophages are, respectively, involved in diet iron absorption and heme iron recycling from senescent erythrocytes, two critical processes of iron homeostasis. These cells appear to use the same transporter, ferroportin (Slc40a1), to export iron. The aim of this study was to compare the localization, expression, and regulation of ferroportin in both duodenal and macrophage cells. Using a high-affinity purified polyclonal antibody, we analyzed the localization and expression of ferroportin protein in the spleen, liver, and duodenum isolated from normal mice as well as from well-characterized mouse models of altered iron homeostasis. Ferroportin was found to be predominantly expressed in enterocytes of the duodenum, in splenic macrophages, and in liver Kupffer cells. Interestingly, the protein species detected in these cells migrated differently on SDS-PAGE. These differences in apparent molecular masses were partly explained by posttranslational complex N-linked glycosylations. In addition, in enterocytes, the transporter was mostly expressed at the basolateral membrane, whereas in bone marrow-derived macrophages, ferroportin was found predominantly localized in the intracellular vesicular compartment. However, some microdomains positive for ferroportin were also detected at the plasma membrane of macrophages. Despite these differences, we observed a parallel upregulation of ferroportin expression in tissue macrophages and enterocytes in response to iron-restricted erythropoiesis, suggesting that iron homeostasis is likely maintained through coordinate expression of the iron exporter in both intestinal and phagocytic cells. Our data also confirm a predominant regulation of ferroportin through systemic regulator(s) likely including hepcidin.  相似文献   

18.
In manganese-enhanced magnetic resonance imaging (MEMRI), the paramagnetic divalent ion of manganese (Mn2+) is injected into animals to generate tissue contrast, typically at much higher exposures than have been previously used in studies of Mn toxicity. Here we investigate the effect of these injections on the homeostasis of the transition metals iron and copper in mice to see if there are disruptions which should be considered in MEMRI studies. Manganese shares transport proteins with other transition metals including iron and copper, so it is possible that changes in manganese levels in tissue following injections of the metal may affect other metal levels too. This in turn may affect MRI contrast or the investigation of disease processes in the animal models being imaged. In this study, we measured manganese, iron, and copper concentrations in the blood, kidney, liver and in brain regions in mice treated with four injections of 30 mg/kg MnCl2 4H2O (dry chemical weight/body weight)—a common dose used in MEMRI. In addition to the expected increases in manganese in tissues, we noted a statistically significant reduction in copper in the kidney and liver. Also, we noted a statistically significant decrease in concentration of iron in the thalamus of the brain. These findings suggest that the high doses of manganese injected in MEMRI studies can disrupt the homeostasis of other transition metals in mice.  相似文献   

19.
Effect of dietary iron deficiency on mineral levels in tissues of rats   总被引:3,自引:0,他引:3  
To clarify the influence of iron deficiency on mineral status, the following two synthetic diets were fed to male Wistar rats: a control diet containing 128 micrograms iron/g, and an iron-deficient diet containing 5.9 micrograms iron/g. The rats fed the iron-deficient diet showed pale red conjunctiva and less reactiveness than the rats fed the control diet. The hemoglobin concentration and hematocrit of the rats fed the iron-deficient diet were markedly less than the rats fed the control diet. The changes of mineral concentrations observed in tissues of the rats fed the iron-deficient diet, as compared with the rats fed the control diet, are summarized as follows: . Iron concentrations in blood, brain, lung, heart, liver, spleen, kidney, testis, femoral muscle, and tibia decreased; . Calcium concentrations in blood and liver increased; calcium concentration in lung decreased; . Magnesium concentration in blood increased; . Copper concentrations in blood, liver, spleen and tibia increased; copper concentration in femoral muscle decreased; . Zinc concentration in blood decreased; . Manganese concentrations in brain, heart, kidney, testis, femoral muscle and tibia increased. These results suggest that iron deficiency affects mineral status (iron, calcium, magnesium, copper, zinc, and manganese) in rats.  相似文献   

20.
Iron-dependent degradation of iron-regulatory protein 2 (IRP2) is a key event for maintenance of an appropriate intracellular concentration of iron. Although FBXL5 (F box and leucine-rich repeat protein 5) is thought to mediate this degradation, the role of FBXL5 in the control of iron homeostasis in?vivo has been poorly understood. We have now found that mice deficient in FBXL5 died in utero, associated with excessive iron accumulation. This embryonic mortality was prevented by additional ablation of IRP2, suggesting that impaired IRP2 degradation is primarily responsible for the death of Fbxl5(-)(/-) mice. We also found that liver-specific deletion of Fbxl5 resulted in deregulation of both hepatic and systemic iron homeostasis, leading to the development of steatohepatitis. The liver-specific mutant mice died with acute liver failure when fed a high-iron diet. Thus, our results uncover a major role for FBXL5 in ensuring an appropriate supply of iron to cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号