首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mature seed samples of twenty-four Boraginaceae taxa collected from their natural habitats in Turkey were analysed by GC for total oil content and fatty acid composition. The range of total fat in the taxa varied between 7.0 and 35.7%. The amounts of palmitic (16:0) and stearic (18:0) acids determined were 5.65–17.81 and 1.49–5.08%, respectively. Mono-unsaturated fatty acids were in the range 8.83–55.32% for oleic, 0.22–6.21% for eicosenoic, 0.04–8.94% for erucic, and 0.08–2.71% for nervonic acid. Poly-unsaturated fatty acids were between 1.41 and 68.44% for linoleic, 0.12 and 43.0% for α-linolenic, 0.04 and 24.03% for γ-linolenic, and 0.02 and 14.59% for stearidonic acid. Total saturated (9.3–23.7%), mono-unsaturated (10.59–73.28%), and poly-unsaturated fatty acids (13.91–68.78%) varied substantially. Total unsaturated fatty acids ranged from 70.12 to 90.29%. There were significant differences between fatty acid profiles at taxa (P < 0.05) at genera levels, based on mono-unsaturated and poly-unsaturated fatty acid concentrations (P < 0.05). Segregation at the generic level by principle-component analysis was accomplished based on nine major fatty acids. The fatty acid patterns, their relative proportions, and quantities of unusual fatty acids as additional biochemical markers seem to be useful in the taxonomy of Boraginaceae at generic and infrageneric levels. All taxa are, in general, rich in linoleic and α-linolenic acids as essential fatty acids for dietary reference intakes. Seed oils of Symphytum, Anchusa, and Trachystemon orientalis for γ-linolenic acid and Echium for both γ-linolenic and stearidonic acid may be evaluated as alternative wild sources.  相似文献   

2.
Quantitative relationships were investigated between α-tocopherol and either polyunsaturated fatty acids (PUFA) or PUFA > 18:2 (PUFA with three or more double bonds) in chicken dark meat (thigh muscle) and light meat (M. pectoralis profundus). Their effects on the development of oxidative rancidity in precooked meats held at 5°C for 3 days were also investigated. Chicken dark meat had higher concentrations of α-tocopherol (μmol) per gram of PUFA or PUFA > 18 :2 than did chicken light meat. 2-Thiobarbituric acid (TBA) values for the cooked ground meats held at 5°C for 3 days tended to increase at both higher and lower concentrations of α-tocopherol than the concentration of about 1.5 μmol of α-tocopherol per gram of PUFA regardless of the type of chicken skeletal muscle.  相似文献   

3.
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ12-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20–42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.  相似文献   

4.
Free radical damage has been associated with a growing number of diseases and conditions, such as autoimmune diseases, neurodegenerative disorders and multiple types of cancer. Some dehydroamino acids and corresponding peptides can function as radical scavengers. In this study the in vitro effects on rat liver lipid peroxidation levels of fourteen N-substituted dehydroamino acid derivatives and α-tocopherol were investigated. α-Tocopherol is a powerful antioxidant that is beneficial in the treatment of many free radical related diseases. The results indicated that all the compounds showed very good inhibitory effect on the lipid peroxidation compound with α-tocopherol at 1 mM concentrations and the inhibition rate was in the range of 70–79 % with the exception of compound 5. At 0.1 mM concentrations compounds 1, 2 and 9 were found more active than α-tocopherol. The results confirmed that molecules such as dehydroamino acids which have reactive double bonds can act as a guard in vitro against oxidants.  相似文献   

5.
Extraction, thin-layer chromatography and gas chromatography–mass spectrophotometry analyses revealed the presence of 12, 13, and 12 fatty acids in young, mature, and senescent leaves of Momordica charantia L., representing 87.30, 95.25, and 83.11 % of the total fatty acids, respectively. The proportion of saturated fatty acids was highest in senescent leaves (78.60 %) followed by young leaves (69.42 %) and mature leaves (48.92 %), with the balance accounted for by unsaturated fatty acids. Palmitic acid was the predominant saturated fatty acid in the three types of leaves, whereas alpha-linolenic acid was the predominant unsaturated fatty acid. The fatty acids from young, mature, and senescent leaves followed by the application of a synthetic mixture of fatty acids that was comparable to the natural fatty acids found in the three types of leaves, elicited the attraction of the female insect Epilachna dodecastigma (Coleoptera: Coccinellidae) at 50–200, 50–200, and 100–200 μg/ml concentrations, respectively, in a Y-shaped glass tube olfactometer bioassay. Individual synthetic fatty acids were also evaluated by the olfactometer bioassay at concentrations comparable to the proportions detected in the three types of leaves. Individual synthetic palmitic acid, stearic acid, oleic acid, linoleic acid, and alpha-linolenic acid at 58.24, 13.96, 29.40, 30.31, and 29.76 μg, respectively, attracted the insect. A synthetic blend of 79.13, 10.57, 29.40, 30.31, and 36.33 μg of palmitic, stearic, oleic, linoleic, and alpha-linolenic acids, respectively, which is the proportion present in a 200 μg/ml concentration of fatty acids of mature leaves, or of 116.49, 13.96, and 29.76 μg of palmitic, stearic and alpha-linolenic acids, respectively, which is the proportion present in a 200 μg/ml concentration of natural fatty acids of young leaves, served as attractants for E. dodecastigma.  相似文献   

6.

Fatty acid desaturases play vital roles in the synthesis of unsaturated fatty acids. In this study, Δ12 and Δ12/Δ15 fatty acid desaturases of the oleaginous yeast Lipomyces starkeyi, termed LsFad2 and LsFad3, respectively, were identified and characterized. Saccharomyces cerevisiae expressing LsFAD2 converted oleic acid (C18:1) to linoleic acid (C18:2), while a strain of LsFAD3-expressing S. cerevisiae converted oleic acid to linoleic acid, and linoleic acid to α-linolenic acid (C18:3), indicating that LsFad2 and LsFad3 were Δ12 and bifunctional Δ12/Δ15 fatty acid desaturases, respectively. The overexpression of LsFAD2 in L. starkeyi caused an accumulation of linoleic acid and a reduction in oleic acid levels. In contrast, overexpression of LsFAD3 induced the production of α-linolenic acid. Deletion of LsFAD2 and LsFAD3 induced the accumulation of oleic acid and linoleic acid, respectively. Our findings are significant for the commercial production of polyunsaturated fatty acids, such as ω-3 polyunsaturated fatty acids, in L. starkeyi.

  相似文献   

7.
The effect of α-tocopherol, β-carotene, monogalactosyldi-glyceride and phosphatidylcholine on red light induced degradation of chlorophyll a was studied in acetone at 4°C. Monogalaclosyldi-glyceride was ineffective up to a molar ratio of monogalactosyldi glyceride to chlorophyll of 1:10. α-Tocopherol, β-carotene and phosphatidylcholine inhibited chlorophyll degradation. Maximal protection by α tocopherol and β-carotene was similar (76%) but on a molar basis a tocopherol was less effective. Protection by phosphatidylcholine was less than by a tocopherol and α-carotene but the lipid was effective at a lower ratio of chlorophyll to protectant. Inhibition by phosphatidylcholine was independent of the degree of unsaturation of the fatty acids. Effects of β-carotene and α-tocopherol were additive at suboptimal concentrations, but addition did not increase the maximal protection of 76% by these substances alone. Phosphatidylcholine increased the effectiveness of α-tocopherol and β-carotene independent of their concentrations. It is suggested that interactions between lipids participate in the mechanism protecting chlorophyll a against photooxidation in the chloroplast membrane.  相似文献   

8.
Vancouver Island marmots (Marmota vancouverensis) (VIMs) are a critically endangered species of fat-storing hibernators, endemic to Vancouver Island, British Columbia, Canada. In addition to in-situ conservation efforts, a captive breeding program has been ongoing since 1997. The captive diet is mostly pellet-based and rich in n−6 polyunsaturated fatty acids (PUFAs). In captivity, overall length of hibernation is shortened, and marmots have higher adipose tissue reserves compared to their wild-born counterparts, which may be a risk factor for cardiovascular disease, the leading cause of mortality in captive marmots. To investigate differences in lipid metabolism between wild and captive populations of VIMs, blood vitamin E, fatty acid (FA) profiles and leptin, and white adipose tissue (WAT) FA profiles were compared during the active season (May to September 2019). Gas chromatography, high-performance liquid chromatography, and multiplex kits were used to obtain FA profiles, α-tocopherol, and leptin values, respectively. In both plasma and WAT, the concentration of the sum of all FA in the total lipids was significantly increased in captive VIMs. The n−6/n−3 ratio, saturated FAs, and n−6 PUFAS were higher in captive marmots, whereas n−3 PUFAs and the HUFA score were higher in wild marmots. Serum concentrations of α-tocopherol were greater by an average of 45% in captive marmots, whereas leptin concentrations did not differ. Results from this study may be applied to improve the diet and implement weight management to possibly enhance the quality of hibernation and decrease the risk of cardiovascular and metabolic diseases of captive VIMs.  相似文献   

9.
ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54–65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.  相似文献   

10.
The lipid fraction of seeds from different pine species and populations was studied regarding total lipid content, fatty acid profile and vitamin E composition. The investigated seeds contained a high percentage of lipid (13.6 to 31.5 %). Lipid fractions were found to be rich in vitamin E, which varied significantly among species and populations. P. halepensis (Ph−Hn) showed the highest content of vitamin E (256.3 mg/kg of seeds) and the uppermost content of α-tocopherol (44 mg/kg). However, P. halepensis (Ph−Kas) was the richest in γ-tocopherol (204.9 mg/kg). Lipid fractions had a low content of δ-tocopherol (1.2 to 3.6 mg/kg. The highest content of γ-tocotrienol (∼18 %) was determined for P. halepensis (Ph−Dc and Ph−Hn). Thirteen fatty acids were identified by GC-FID with significant variation between the investigated species. The linoleic acid was the major fatty acid followed by oleic acid and palmitic acid. The chemical differentiation among species for the composition of fatty acids and vitamin E was confirmed by PCA. Significant correlations were observed between the content of vitamin E and fatty acids and ecological parameters of P. halepensis populations.  相似文献   

11.
The impact of culture conditions and addition of antioxidants to media on microspore embryogenesis in rapeseed (Brassica napus cv. ‘PF704’) was investigated. Different concentrations of ascorbic acid (0, 5, 10, 20, 50, 100, and 200 mg l?1) and alpha (α)-tocopherol (0, 5, 10, 20, 50, 100, and 200 mg l?1) were evaluated along with two temperature pretreatments (18 d at 30°C; 2 d at 32.5°C followed by 16 d at 30°C). In addition, combinations of reduced glutathione (0, 10, 50, and 100 mg l?1) and ascorbic acid (5 and 10 mg l?1) were tested. Microspore embryogenesis was significantly enhanced using 10 mg l?1 ascorbic acid (334 embryos per Petri dish) compared with untreated cultures (184 embryos per Petri dish) at 30°C. α-Tocopherol (5 and 10 mg l?1) enhanced (312 and 314 embryos per Petri dish, respectively) microspore embryogenesis relative to untreated cultures (213 embryos per Petri dish) at 30°C, although there were no significant differences among cultures treated with 5–50 mg l?1 α-tocopherol. When 50 mg l?1 α-tocopherol was combined with 5 or 10 mg l?1 ascorbic acid, embryogenesis was significantly enhanced (308 and 328 embryos per Petri dish, respectively) relative to other ascorbic acid levels. Moreover, 10 mg l?1 of reduced glutathione and 5 mg l?l ascorbic acid enhanced microspore embryogenesis (335 embryos per Petri dish) compared to cultures without reduced glutathione (275 embryos per Petri dish). Microspore embryogenesis could be improved by adding ascorbic acid, α-tocopherol, and reduced glutathione when the appropriate combination and temperature pretreatment were selected.  相似文献   

12.
In this investigation, we report on the treatment of tannery wastewater using microalgae Chlorella species to produce lipid and fatty acid as well as changes in antioxidant metabolism during the treatment. The variation in growth, production of pigments, antioxidant metabolism, lipid and fatty acids, and nutrient removal from wastewater during the remediation were observed. Surprisingly, a profuse growth was found in 50% diluted tannery wastewater (TW), which supported to accumulate high yield of lipid (18.5%) and unsaturated fatty acids (50.05%). The antioxidant activity of microalgae in both the concentrations (50% and 100% TW) were viz., lipid peroxidation 1.6 ± 0.1 and 2.3 ± 0.02nmol MDA mg?1 protein, SOD 10.3 ± 0.4 and 15.7 ± 0.9 U mg?1 protein, CAT 0.17 ± 0.036 and 0.52 ± 0.06 U mg?1 protein, and APX 7.2 ± 0.8 and 11.2 ± 09 U mg?1 protein respectively, which point out that the free radical scavenging mechanism against heavy metal stress. Maximum phycoremediation of heavy metals observed from both concentrations during the healthy growth period were Cr – 73.1, 45.7%, Cu – 90.4, 78.1%, Pb – 92.1, 52.2%, and Zn – 81.2, 44.6%, respectively. This study proved the potential use of Chlorella for heavy metal and nutrient removal from tannery wastewater. Moreover, an unaffected growth with high antioxidant activity of this species promises a sustainable lipid and fatty acid contents for biofuel production.  相似文献   

13.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

14.
The fatty acid composition of lipids in various organs and in the stomach contents of two species of frigate mackerel, Auxis rocheri and Auxis thazard, related to the tuna species was determined. Docosahexaenoic acid was the dominant unsaturated fatty acid accounting for 20% or more of the total fatty acids in all organs of the two frigate mackerel species (mean ±S.D.: 22.6 ± 6.0% for rocheri, 28.0 ± 4.3% for A. thazard), while the fatty acids in lipids from their stomach contents were comparatively low (1.5–13.0% for A. rocheri, 15.4–16.5% for A. thazard). It is suggested that the high content of DHA in the lipids of tuna species is a general characteristic.  相似文献   

15.
Nowadays, microalgae are discussed as a promising feedstock for biodiesel production. The present study examines the possibility of enhancement of fatty acid productivity of Scenedesmus obliquus by modifications of the culture medium composition. The effect of different concentrations of sodium bicarbonate, salinity, potassium nitrate, glycerol and sugarcane molasses on the enhancement of biomass and esterified fatty acids production was studied. NaHCO3 caused an increase in the biomass productivity at low concentrations (0.5 g L?1), while negatively affected fatty acid productivity at all tested concentrations. Increase of salinity enhanced both biomass and fatty acid productivity. The optimum NaCl concentration and sea water ratio were 0.94 g L?1 and 25 % which resulted in 56 and 39 % increase in fatty acid productivity, respectively. Nitrogen deficiency showed increase in fatty acid content by 54 % over control but fatty acid productivity was decreased as a result of growth inhibition. Nitrogen-free cultures and cultures treated with ?50 % concentrations of KNO3 showed 96 and 42 % decrease in EFA productivity, respectively, as compared with the control. Addition of 0.05 and 0.1 M of glycerol increased the biomass productivity by 6 and 5 %, respectively but showed no significant effect on fatty acid productivity as a result of decrease in fatty acid content. Finally, usage of sugarcane molasses stimulated both biomass and fatty acid content. The increase in fatty acid productivity was 32, 65 and 73 % above the control level at 1, 3 and 5 g L?1 of sugarcane molasses, respectively.  相似文献   

16.
Abstract

The nutritive value of genetically modified myristic acid-rich rapeseed, in which a acyl-thioesterase gene inserted, was studied. Crude nutrients, amino acid and fatty acid profiles as well as mineral and glucosinolate contents were determined and compared with those of the non-transgenic parental cultivar. The concentration of crude nutrients, minerals and amino acids were found to be within the range of natural variance. The myristic and palmitic acid content increased from 0.1 – 11.4% and from 3.6 – 20%, respectively, at the expense of oleic acid, which decreased from 68.6 – 42.6% of total fatty acids. The glucosinolate contents increased from 12.4 µmol/g in the parental plant to 19 µmol/g DM in the GM-plant. Full-fat rapeseed of both cultivars was incorporated in pig diets at a level of 15%, and the digestibility and the production efficiency were tested under ad libitum feeding conditions with ten pigs each over the growing finishing period from 32 – 105 kg BW. The experimental diets did not show significant differences in digestibility and energetic feeding value. However, feed intake and weight gain decreased presumably due to the increasing glucosinolate intake associated with the feeding of transgenic rapeseed. The dietary fatty acids profile influenced the fatty acid profile of body fat. Myristic acid accumulated in back fat and intramuscular fat while the oleic acid content decreased. The increased glucosinolate intake affected the weight of thyroid glands and their iodine concentration.  相似文献   

17.
Composition of lipids, sterols, fatty acids (FA), and phospholipids in the edible Rhodophyta Grateloupia turuturu from Britanny, France, was investigated over four seasons in order to identify compounds with potential benefits in health and nutrition. The lipid content was found to vary from 3.3 to 4.1 % dry weight. No marked variations were observed for glycolipids accounting for 42.3–46.8 %, whereas neutral lipids and phospholipids fluctuated from 20.1 % (summer) to 41.8 % (winter), and 11.2 % (winter) to 33.4 % (summer), respectively. Polyunsaturated FA of the total lipids were found from 20.4 % (winter) to 31.1 % (summer), including 20:5 ω3 acid as the major one (up to 16.3 % in summer). Phosphatidylcholine (20.0–43.7 %) and phosphatidylserine (24.6–37.5 %) were the dominant phospholipids in all seasons. Compounds of interest were identified in minor amounts such as squalene, α-tocopherol, phytonadione (vitamin K1), cholesteryl formate, cholest-4-en-3-one, and cholesta-4,6-dien-3-one. Cholesterol was the major sterol with a lower content in spring and summer.  相似文献   

18.
In this study, variations in the chemical composition of Costaria costata collected during 3 months of the harvest period were analyzed. Moisture (4.94–10.50 %), ash (29.25–38.19 %), protein (9.77–18.15 %), lipid (0.60–2.21 %), crude fiber (4.45–5.68 %), alginate (22.49–29.13 %), fucoxanthin (0.07–0.32 mg g?1), polyphenol (1.579–4.796 mg g?1) were analyzed from dried alga. Six mineral elements were analyzed and the most abundant were calcium (6.64–11.56 mg g?1) and magnesium (7.02–7.92 mg g?1). Analysis of fatty acid composition indicated that the polyunsaturated fatty acids palmitoleic acid and linoleic acid were abundant in May and June, whereas the saturated fatty acid palmitic acid was abundant in July. Amino acid composition was also analyzed and the most abundant amino acids were aspartic acid, glutamic acid, glycine, and alanine. The ratio of mannuronic acid to guluronic acid of alginate was 2.57, 2.17, and 1.66 in May, June, and July, respectively. The gel strength of alginate was 1,449.0, 1,935.0, and 980.5 g cm?1 in May, June, and July, respectively. The results of this study indicate that C. costata is an excellent resource that provides extensively applications in the industrial areas of chemicals, food, cosmetics, and pharmacy.  相似文献   

19.
Due to the established health benefits of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), there is a globally increasing demand for alternative natural resources with appropriate fatty acid profiles. To assess the suitability of macroalgae as a source, 16 species (nine Phaeophyceae, five Rhodophyta and two Chlorophyta) were collected at two seasons (June and November) from the Irish west Coast, and total fatty acid contents and specific profiles were determined. Total fatty acid contents, expressed per percentage of dry weight, ranged from 6.4 %?±?0.3 (Pelvetia canaliculata, Phaeophyceae) to 0.8 %?±?0.2 (Porphyra dioica, Rhodophyta). Most common fatty acids were palmitic (16:0), oleic (OLE, 18:1 n-9), α-linolenic (ALA, 18:3 n-3), arachidonic (ARA, 20:4 n-6) and eicosapentaenoic (EPA, 20:5 n-3) acids. Fatty acid profiles were highly variable between and within algal groups; red and brown seaweeds were generally richer in LC-PUFA (e.g. 20:4 n-6 and 20:5 n-3), while high levels of saturated fatty acids such as palmitic acid (16:0) were observed in green species. Most omega-3 PUFA-rich species investigated had a omega-6/omega-3 fatty acid ratio close to 1, which is favourable for human health. The two seasonal sampling times revealed significant differences in total fatty acid and 20:5 n-3 (EPA) contents, with changes depending on species, thus implying varying suitability as potential target species for EPA production. At both times of the year, Palmaria palmata was identified as most promising species as a source of 20:5 n-3 (EPA) amongst all species investigated, with levels ranging from 0.44 to 0.58 % of dry weight in June and November, respectively.  相似文献   

20.
Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5–200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号