首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%–40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.  相似文献   

3.
Adenosine monophosphate-activated protein kinase (AMPK) acts as a major sensor of cellular energy status in cancers and is critically involved in cell sensitivity to anticancer agents. Here, we showed that AMPK was inactivated in lymphoma and related to the upregulation of the mammalian target of rapamycin (mTOR) pathway. AMPK activator metformin potentially inhibited the growth of B- and T-lymphoma cells. Strong antitumor effect was also observed on primary lymphoma cells while sparing normal hematopoiesis ex vivo. Metformin-induced AMPK activation was associated with the inhibition of the mTOR signaling without involving AKT. Moreover, lymphoma cell response to the chemotherapeutic agent doxorubicin and mTOR inhibitor temsirolimus was significantly enhanced when co-treated with metformin. Pharmacologic and molecular knock-down of AMPK attenuated metformin-mediated lymphoma cell growth inhibition and drug sensitization. In vivo, metformin induced AMPK activation, mTOR inhibition and remarkably blocked tumor growth in murine lymphoma xenografts. Of note, metformin was equally effective when given orally. Combined treatment of oral metformin with doxorubicin or temsirolimus triggered lymphoma cell autophagy and functioned more efficiently than either agent alone. Taken together, these data provided first evidence for the growth-inhibitory and drug-sensitizing effect of metformin on lymphoma. Selectively targeting mTOR pathway through AMPK activation may thus represent a promising new strategy to improve treatment of lymphoma patients.  相似文献   

4.
We investigated the possibility to produce hippocampal or amygdala kindling syndrome in rabbits which had been electrically stimulated at a fixed interval between stimuli at 5 min. Animals were prepared with chronically implanted electrodes (neocortex, hippocampus, amygdala, nucleus caudatus). The initial stimuli produced only localized effect, but repeated applications of the stimuli progressively increased the seizure activity resulting in generalized kindled convulsions after 2-4 h period. At the first stage generalized seizures were followed by long lasting refractory period, but at the end of the procedure almost all stimuli evoke major motor seizures and recurrent widely spread electrographic epileptic changes. The most noteworthy findings emerging from this study is the inhibition of postictal seizure inhibition period. This effect was independent of whether stimulated the electrode was positioned in the hippocampus or amygdala, but the hippocampal formation occupied the central position for the once and propagation of the seizure activity in all cases. When established this syndrome persisted without any attenuation for some weeks. It was concluded that this model of rapid development of kindling syndrome is useful for investigation of the nature of epilepsy and postictal seizure inhibition.  相似文献   

5.
Epilepsy is a chronic encephalopathy and one of the most common neurological disorders. Death-associated protein kinase 1 (DAPK1) expression has been shown to be upregulated in the brains of human epilepsy patients compared with those of normal subjects. However, little is known about the impact of DAPK1 on epileptic seizure conditions. In this study, we aim to clarify whether and how DAPK1 is regulated in epilepsy and whether targeting DAPK1 expression or activity has a protective effect against epilepsy using seizure animal models. Here, we found that cortical and hippocampal DAPK1 activity but not DAPK1 expression was increased immediately after convulsive pentylenetetrazol (PTZ) exposure in mice. However, DAPK1 overexpression was found after chronic low-dose PTZ insults during the kindling paradigm. The suppression of DAPK1 expression by genetic knockout significantly reduced PTZ-induced seizure phenotypes and the development of kindled seizures. Moreover, pharmacological inhibition of DAPK1 activity exerted rapid antiepileptic effects in both acute and chronic epilepsy mouse models. Mechanistically, PTZ stimulated the phosphorylation of NR2B through DAPK1 activation. Combined together, these results suggest that DAPK1 regulation is a novel mechanism for the control of both acute and chronic epilepsy and provide new therapeutic strategies for the treatment of human epilepsy.  相似文献   

6.
We studied the effect of acute stress induced by nociceptive stimulation of the limbs on the duration of ECoG epileptiform activity and manifestation of generalized motor convulsive reactions under conditions of a kindling model of epilepsy in rats. Two and four weeks after termination of the kindling procedure, test stimulations of the hippocampus evoked intense attacks of epileptic activity. Short-lasting pain-inducing stimulation (intense electrical stimulation of the limbs) resulted in noticeable limitation of both ECoG and motor behavioral manifestations of epileptic activity determined by the formation of an epileptogenic nidus. The antiepileptic effect of acute stress was limited in time; manifestations of this effect reached their maximum about 3 h after painful stimulation, while about 6 h after such stimulation they became smoothed to a considerable extent.  相似文献   

7.
Extensive studies over the years have shown that the AMP-activated kinase (AMPK) exhibits negative regulatory effects on the activation of the mammalian target of rapamycin (mTOR) signaling cascade. We examined the potential involvement of AMPK in the regulation of growth and survival of malignant melanoma cells. In studies using the AMPK activators AICAR or metformin, we found potent inhibitory effects of AMPK activity on the growth of SK-MEL-2 and SK-MEL-28 malignant melanoma cells. Induction of AMPK activity was also associated with inhibition of the ability of melanoma cells to form colonies in an anchorage-independent manner in soft agar, suggesting an important role of the pathway in the control of malignant melanoma tumorigenesis. Furthermore, AICAR-treatment resulted in malignant melanoma cell death and such induction of apoptosis was further enhanced by concomitant statin-treatment. Taken together, our results provide evidence for potent inhibitory effects of AMPK on malignant melanoma cell growth and survival and raise the potential of AMPK manipulation as a novel future approach for the treatment of malignant melanoma.  相似文献   

8.
Cognitive impairment, the most common and severe comorbidity of epilepsy, greatly diminishes the quality of life. However, current therapeutic interventions for epilepsy can also cause untoward cognitive effects. Thus, there is an urgent need for new kinds of agents targeting both seizures and cognition deficits. Oxidative stress is considered to play an important role in epileptogenesis and cognitive deficits, and antioxidants have a putative antiepileptic potential. Metformin, the most commonly prescribed antidiabetic oral drug, has antioxidant properties. This study was designed to evaluate the ameliorative effects of metformin on seizures, cognitive impairment and brain oxidative stress markers observed in pentylenetetrazole-induced kindling animals. Male C57BL/6 mice were administered with subconvulsive dose of pentylenetetrazole (37 mg/kg, i.p.) every other day for 14 injections. Metformin was injected intraperitoneally in dose of 200 mg/kg along with alternate-day PTZ. We found that metformin suppressed the progression of kindling, ameliorated the cognitive impairment and decreased brain oxidative stress. Thus the present study concluded that metformin may be a potential agent for the treatment of epilepsy as well as a protective medicine against cognitive impairment induced by seizures.  相似文献   

9.
Emerging evidence indicates that dysbiosis of gut microbiota plays an important role in epilepsy, although the underlying mechanisms remain unclear due to the complex nature of both microbial composition and pathophysiology of epilepsy. We investigated effects of long-term probiotics supplementation on epileptic seizures, and inflammatory and oxidant/antioxidant biomarkers in a pentylenetetrazole(PTZ)-induced seizure model in rats.Male Wistar weaner-rats were divided into four groups. The first two groups received 1 ml/day saline solution, while the other groups received 0.05 mg/1ml/day vehicle or 109cfu/1ml/day probiotic-mixture, respectively, for 60 days by gavage. Seizure was induced by a single convulsive dose of PTZ. Seizures were evaluated using Racine's scale. Concentrations of pro-inflammatory cytokines in plasma and brain tissue were determined using ELISA, while oxidant/antioxidant biomarkers were measured using an automated-colorimetric method.Probiotics supplementation exhibited anticonvulsant effects against PTZ-induced seizures by retarding onset-times of both myoclonic-jerk and generalized tonic–clonic seizure, and by shortening duration of generalized tonic–clonic seizure. Additionally, it alleviated PTZ-induced increases in levels of pro-inflammatory cytokines IL-1β, IL-6, and IL-17A, but not of IFNγ, in plasma and brain tissue. Moreover, it restored PTZinduced fluctuations in levels of oxidants TOS and disulfide, and of antioxidants native thiol and total thiol.Our findings suggest that long-term probiotics supplementation exhibits protective effects against epileptic seizures, and alleviates (neuro)inflammation and oxidative stress related to pathophysiology of epilepsy. A probiotic-rich diet provided from childhood may provide prophylaxis against epileptic seizures, especially in susceptible individuals, as the neonate diet represents a fundamental extrinsic factor in establishing gut microbiota.  相似文献   

10.
Insulin resistance is the primary cause responsible for type 2 diabetes. Phosphatase and tensin homolog (PTEN) plays a negative role in insulin signaling and its inhibition improves insulin sensitivity. Metformin is a widely used insulin-sensitizing drug; however, the mechanism by which metformin acts is poorly understood. To gain insight into the role of PTEN, we examined the effect of metformin on PTEN expression. Metformin suppressed the expression of PTEN in an AMP-activated protein kinase (AMPK)-dependent manner in preadipocyte 3T3-L1 cells. Knock-down of PTEN potentiated the increase in insulin-mediated phosphorylation of Akt/ERK. Metformin also increased the phosphorylation of c-Jun N-terminal kinase (JNK)-c-Jun and mammalian target of rapamycin (mTOR)-p70S6 kinase pathways. Both pharmacologic inhibition and knock-down of AMPK blocked metformin-induced phosphorylation of JNK and mTOR. Knock-down of AMPK recovered the metformin-induced PTEN down-regulation, suggesting the involvement of AMPK in PTEN regulation. PTEN promoter activity was suppressed by metformin and inhibition of mTOR and JNK by pharmacologic inhibitors blocked metformin-induced PTEN promoter activity suppression. These findings provide evidence for a novel role of AMPK on PTEN expression and thus suggest a possible mechanism by which metformin may contribute to its beneficial effects on insulin signaling.  相似文献   

11.
We describe experimental studies of the anticonvulsive effects of neuropeptides from the kyotorphin family (kyotorphin, neokyotorphin, and 2-ser-neokyotorphin) and galanin tested in a model of picrotoxin-induced kindling in rats. Intraventricular injections of the above neuropeptides demonstrated their clear anticonvulsive efficacy: the latency of the first convulsive reactions increased, and the intensity of seizures decreased. A protective efficacy of these peptides observed under conditions of the kindling model (which is the most steady with respect to the effects of antiepileptic drugs, and whose phenomenology is the closest to clinical manifestations of epilepsy) allows us to believe that further studies of anticonvulsive action of the peptides is expedient.  相似文献   

12.
The chronic use of opioids leads to tolerance, psychological, and physical dependence that limits their use as an effective long-term pain control. Several studies have shown that mammalian target of rapamycin (mTOR) plays a crucial role in the development of opioid tolerance. Metformin activates 5′ adenosine monophosphate-activated protein kinase (AMPK) which directly suppresses the mTOR complex 1 signaling pathway. On the other hand, metformin can also inhibit mTOR directly and in an AMPK-independent manner. Thus, in the current study, we aimed to investigate the effects of metformin on the development of morphine and/or methadone-induced tolerance in human glioblastoma (T98G) cell line. We examined the effects of chronic treatment of morphine and/or methadone in the presence or absence of metformin with or without AMPK inhibitor (dorsomorphin hydrochloride) on levels of nitric oxide and cyclic adenosine monophosphate (cAMP), phosphorylated and dephosphorylated ribosomal protein S6 kinase β-1 (S6K1) and 4E-binding protein 1 (4E-BP1) in T98G cells. Pretreatment of cells with metformin (40 µM) with or without AMPK inhibitor (dorsomorphin hydrochloride; 1 µM) before adding of morphine (2.5 µM) or methadone (1 µM) revealed a protective effects on the development of opioid tolerance. Prior administration of metformin reversed the elevation of nitric oxide levels induced by morphine (p < 0.001) and methadone (p < 0.001) and also prevented the raise of cAMP levels induced by morphine in T98G cells (p < 0.05). Contribution of mTOR signaling pathway in metformin-induced effect was shown by the inhibition of phosphorylation of S6K1 and 4E-BP1, the downstream targets of mTOR. mTOR activation suppresses opioid-induced antinociception, and its activity has also been increased during opioid tolerance.  相似文献   

13.
The seizure susceptibility of amygdaloid complex in rat was investigated. In piriform cortex and cortical nucleus of amygdaloid complex the structural and electrophysiological rostro-caudal differences were found (using relative spectral densities EEG, seizure thresholds, electrical kindling rate). The fundamental dependence of severity of motor seizures from structural (nuclear or cortical) organization of stimulating area was shown. There were more of limbic stages while stimulating anterior and posterior cortical nuclei, and there were more generalized stages while stimulating piriform and periamygdaloid cortex. Using the model of electrical kindling anticonvulsant effects of Sacricin were demonstrated. Sacricin is one of the compounds of polycarbonic acid. Sacricin has fully coped the process of secondary generalization of epileptic seizures.  相似文献   

14.
Hyperactivation of the mammalian target of rapamycin (mTOR) pathway can cause malformation of cortical development (MCD) with associated epilepsy and intellectual disability (ID) through a yet unknown mechanism. Here, we made use of the recently identified dominant-active mutation in Ras Homolog Enriched in Brain 1 (RHEB), RHEBp.P37L, to gain insight in the mechanism underlying the epilepsy caused by hyperactivation of the mTOR pathway. Focal expression of RHEBp.P37L in mouse somatosensory cortex (SScx) results in an MCD-like phenotype, with increased mTOR signaling, ectopic localization of neurons, and reliable generalized seizures. We show that in this model, the mTOR-dependent seizures are caused by enhanced axonal connectivity, causing hyperexcitability of distally connected neurons. Indeed, blocking axonal vesicle release from the RHEBp.P37L neurons alone completely stopped the seizures and normalized the hyperexcitability of the distally connected neurons. These results provide new evidence of the extent of anatomical and physiological abnormalities caused by mTOR hyperactivity, beyond local malformations, which can lead to generalized epilepsy.

Hyperactivation of the mTOR pathway can cause cortical malformations and epilepsy. This study reveals that these effects can be uncoupled and that mTOR hyperactivity in a limited set of neurons induces hyperexcitability in non-targeted, healthy neurons, suggesting that it is actually these changes that may underlie mTOR-driven epileptogenesis.  相似文献   

15.
The aim of this study was to determine the neuronal participation of nitric oxide (NO) in experimental epilepsy. To reach this objective, we established the amount of cells presenting nitric oxide synthase (NOS) and the amygdaline concentrations in the -arginine–nitric oxide synthesis pathway. A group of fully epileptic rats, induced by the kindling procedure and that had reached at least 10 generalized seizures, was studied. We evaluated behavioral stages, electroencephalographic activities, and histochemical NOS-positive cells and carried out high-pressure liquid chromatography (HPLC) determinations of arginine, citrulline, and glutamic acid. Our results showed that behavioral and electrographic frequency, and duration of epileptic activities, were increased during the kindling process. Image processing system of NOS cells showed two types of intensities in cell stains in hippocampus, caudate-putamen, and amygdala. When we independently counted the two types of NOS stain cells, a selective increase in the number and density of weak-stained cells was observed, while dark-stained cells did not change in the studied structures. Additionally, arginine, citrulline, and glutamic acid concentrations in amygdala increased in kindled animals. The differential and specific increase in the stained cells expressing the nitric oxide synthase, as well as the increase in concentrations of the -arginine–nitric oxide pathway in amygdala, suggested a relationship with the progressive augmentation in the electrophysiological hyperactivity characteristic of generalized epilepsy.  相似文献   

16.
AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were assessed. Insulin increased Akt Ser473 phosphorylation (P < 0.01), irrespective of genotype or presence of AICAR. AICAR increased phosphorylation of AMPK Thr172 (P < 0.01) in WT but not KO mice. Insulin stimulation increased phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46) (P < 0.01) in WT, AMPK alpha2 KO, and AMPK gamma3 KO mice. However, in WT mice, preincubation with AICAR completely inhibited insulin-induced phosphorylation of mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46). In conclusion, functional alpha2 and gamma3 AMPK subunits are required for AICAR-induced inhibitory effects on mTOR signaling.  相似文献   

17.
Models of basic types of epileptic seizures are elaborated not only in adult but also in immature rodents. It is important because at least half of human epilepsies starts during infancy and childhood. This paper presents a review of chemically and electrically induced models of generalized convulsive and nonconvulsive (absence) seizures as well as models of partial simple (neocortical) and complex (limbic) seizures in immature rats. These models can also serve as a tool for study the development of central nervous system and motor abilities because the level of maturation is reflected in seizure semiology. Age-dependent models of epileptic seizures (absences and flexion seizures) are discussed. Models of seizures in immature animals should be used for testing of potential antiepileptic drugs.  相似文献   

18.
We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G2M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy.  相似文献   

19.
Core mechanisms in generalized convulsions   总被引:2,自引:0,他引:2  
A hypothetical model is proposed to account for the generalized convulsions observed in rats. Two versions of the hypothesis are discussed: an earlier, more specific formulation that accounts for kindled convulsions, and a later, general version that applies to generalized convulsions as a whole. Observations leading to the specific formulation of the model included: 1) kindling data that suggested a single downstream center responsible for kindled convulsions; 2) brain-stem stimulation data that indicated that the reticular core of that structure could initiate and maintain generalized convulsive behavior; and 3) spinal hemisection data that indicated that nonspecific systems in the cord could also maintain convulsions, even in the absence of direct input from the brain. The more specific version of the model suggests that kindled convulsions are nonspecific core seizures that occur when self-sustained epileptic activation spreads from forebrain foci to involve descending polysynaptic pathways in the nonspecific core of the brain stem and cord. Observations leading to a more general formulation of the model include the facts that: 1) maximal and submaximal convulsions in a variety of models resemble each other; and 2) they also resemble the maximal and submaximal seizures produced by direct stimulation of the brain stem and cord. The more general formulation of the nonspecific core hypothesis suggests that a wide variety of convulsions in rats may be nonspecific core seizures, differences in tonic-clonic and rostrocaudal configuration being related primarily to differences in the intensity of core activation.  相似文献   

20.
Kindling is a model of complex partial epilepsy wherein periodic application of an initially subconvulsive stimulus leads to first limbic and then generalized tonic-clonic seizures. Several laboratories have reported that augmented neurotransmitter release of l-glutamate is associated with the chronically kindled state. Neurotransmitter release requires membrane proteins called SNAREs, which form transmembrane complexes that participate in vesicle docking and are required for membrane fusion. We show here that kindling by entorhinal stimulation is associated with an accumulation of 7S SNARE complexes in the ipsilateral hippocampus. This increase of 7S SNARE complexes appears to begin early in the kindling process, achieves a peak with full kindling, and remains at this level for at least a month following cessation of further kindling stimuli. The increase is focal and permanently limited to the ipsilateral hippocampus despite progression to generalized electrographic and behavioral seizures. It is not seen in animals that receive electroconvulsive seizures, suggesting it is related to the kindling process itself. The duration and focality of increased 7S SNARE complexes with entorhinal kindling suggest that this is an altered molecular process associated with epileptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号