首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Temporary rivers and streams are among the most common and most hydrologically dynamic freshwater ecosystems. The number of temporary rivers and the severity of flow intermittence may be increasing in regions affected by climatic drying trends or water abstraction. Despite their abundance, temporary rivers have been historically neglected by ecologists. A recent increase in temporary‐river research needs to be supported by new models that generate hypotheses and stimulate further research. In this article, we present three conceptual models that address spatial and temporal patterns in temporary‐river biodiversity and biogeochemistry. 2. Temporary rivers are characterised by the repeated onset and cessation of flow, and by complex hydrological dynamics in the longitudinal dimension. Longitudinal dynamics, such as advancing and retreating wetted fronts, hydrological connections and disconnections, and gradients in flow permanence, influence biotic communities and nutrient and organic matter processing. 3. The first conceptual model concerns connectivity between habitat patches. Variable connectivity suggests that the metacommunity and metapopulation concepts are applicable in temporary rivers. We predict that aggregations of local communities in the isolated water bodies of temporary rivers function as metacommunities. These metacommunities may become longitudinally nested due to interspecific differences in dispersal and mortality. The metapopulation concept applies to some temporary river species, but not all. In stable metapopulations, rates of local extinction are balanced by recolonisation. However, extinction and recolonisation in many temporary‐river species are decoupled by frequent disturbances, and populations of these species are usually expanding or contracting. 4. The second conceptual model predicts that large‐scale biodiversity varies as a function of aquatic and terrestrial patch dynamics and water‐level fluctuations. Habitat mosaics in temporary rivers change in composition and configuration in response to inundation and drying, and these changes elicit a range of biotic responses. In the model, aquatic biodiversity initially increases directly with water level due to increasing abundance of aquatic patches. When most of the channel is inundated and most aquatic patches are connected, further increases in aquatic habitat and connectivity cause aquatic biodiversity to decline due to community homogenisation and reduced habitat diversity. The predicted responses of terrestrial biodiversity to changes in water level are the inverse of aquatic biodiversity responses. 5. The third conceptual model represents temporary rivers as longitudinal, punctuated biogeochemical reactors. Advancing fronts carry water, solutes and particulate organic matter downstream; subsequent flow recessions and drying result in deposition of transported material in reserves such as pools and bar tops. Material processing is rapid during inundated periods and slower during dry periods. The efficiency of material processing is predicted to increase with the number of cycles of transport, deposition and processing that occur down the length of a temporary river. 6. We end with a call for conservation and resource management that addresses the unique properties of temporary rivers. Primary objectives for effective temporary river management are preservation or restoration of aquatic‐terrestrial habitat mosaics, preservation or restoration of natural flow intermittence, and identification of flow requirements for highly valued species and processes.  相似文献   

2.
Temporary rivers are increasingly common freshwater ecosystems, but there have been no global syntheses of their community patterns. In this study, we examined the responses of aquatic invertebrate communities to flow intermittence in 14 rivers from multiple biogeographic regions covering a wide range of flow intermittence and spatial arrangements of perennial and temporary reaches. Hydrological data were used to describe flow intermittence (FI, the proportion of the year without surface water) gradients. Linear mixed‐effects models were used to examine the relationships between FI and community structure and composition. We also tested if communities at the most temporary sites were nested subsets of communities at the least temporary and perennial sites. Taxon richness decreased as FI increased and invertebrate communities became dominated by ubiquitous taxa. The number of resilient taxa (with high dispersal capacities) decreased with increased FI, whereas the number of resistant taxa (with adaptations to desiccation) was not related to FI. River‐specific and river‐averaged model comparisons indicated most FI‐community relationships did not differ statistically among rivers. Community nestedness along FI gradients was detected in most rivers and there was little or no influence of the spatial arrangement of perennial and temporary reaches. These results indicate that FI is a primary driver of aquatic communities in temporary rivers, regardless of the biogeographic species pool. Community responses are largely due to resilience rather than resistance mechanisms. However, contrary to our expectations, resilience was not strongly influenced by spatial fragmentation patterns, suggesting that colonist sources other than adjacent perennial reaches were important.  相似文献   

3.
4.
The Mauritia flexuosa L.f. palm is known as the “tree of life” given its importance as fundamental food and construction resources for humans. The species is broadly distributed in wet habitats of Amazonia and dry habitats of the Amazon and Orinoco river basins and in the Cerrado savanna. We collected 179 individuals from eight different localities throughout these habitats and used microsatellites to characterize their population structure and patterns of gene flow. Overall, we found high genetic variation, except in one savanna locality. Gene flow between populations is largely congruent with river basins and the direction of water flow within and among them, suggesting their importance for seed dispersal. Further, rivers have had a higher frequency of human settlements than forested sites, contributing to population diversity and structure through increased human use and consumption of M. flexuosa along rivers. Gene flow patterns revealed that migrants are sourced primarily from within the same river basin, such as those from Madeira and Tapajós basins. Our work suggests that rivers and their inhabitants are a critical element of the landscape in Amazonia and have impacted the dispersal and subsequent distribution of tropical palm species, as shown by the patterns of genetic variation in M. flexuosa.  相似文献   

5.
The benthic macroinvertebrate communities and ecological quality of eleven temporary rivers (seven intermittent and four ephemeral) in Dadia National Park, north-eastern Greece, were examined with respect to the degree of flow temporality. Sampling took place during the high flow season at both ephemeral and intermittent sites and during the low flow season only at the intermittent ones, which receded to pools. Despite the remarkable seasonal variation in both the hydrology and ecology of the intermittent rivers, the various metrics and indices as well as the multivariate analyses confirmed the clear distinction between the two river types (ephemeral and intermittent). Existing European quality indices do not sufficiently differentiate between ephemeral and intermittent river types, and thus cannot reliably discriminate the degree of natural variability from human induced stressors in temporary rivers.  相似文献   

6.
7.
8.
Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This study sought to determine whether riparian vegetation characteristics differed between sites where Tamarix was present and sites where Tamarix was absent during the invasion of the upper Verde. We hypothesized that herbaceous understory and woody plant communities would differ between Tamarix present and absent sites. Our hypothesis was generally confirmed, the two types of sites were different. Tamarix present sites had greater abundance of all vegetation, native understory species, graminoids, and native trees, and a positive association with perennial native wetland plant species. Tamarix absent sites had greater abundance of exotic plants and upland adapted plants and an association with greater abiotic cover and litter. These results are contrary to other reports of Tamarix association with depauperate riparian plant communities, and suggest that Tamarix invasion of a watershed with a relatively natural flow regime and a robust native plant community follows similar establishment patterns as the native riparian plant community.  相似文献   

9.
1. Plant physical ecosystem engineers can influence vegetation population and community dynamics by modifying, maintaining or creating habitats. They may also have the potential to act upon biotic processes, such as seed dispersal. 2. Examples exist of reduction in seed dispersal distances in vegetated compared to unvegetated terrestrial environments, and concentration of seed deposits associated with plant patches. Such effects in aquatic environments have been little studied, but the engineering effect of plant patches on patterns of flow velocity and sediment deposition in streams suggests that they may play a similar role. 3. In this study, we assess the potential of an emergent aquatic species, Sparganium erectum, to play a role in physically modifying river habitats and trapping seeds by examining patterns of seed deposition and substrate type in 47 river reaches across England and southern Scotland, U.K. 4. Areas of the river channel within or adjacent to S. erectum patches harboured more plant seeds and more species than unvegetated areas and had finer, sandier substrates with higher organic matter, total nitrogen and total phosphorus content. Most seed species were competitive, indicating that they were well suited to colonise the competitive environment of an S. erectum patch, and could potentially further stabilise accumulated sediments and contribute to landform development. 5. We demonstrate that S. erectum patches influence both the physical environment and the retention of seeds, in consistent patterns across the channel bed, for a range of lowland rivers that vary in stream power and geology and which can be expected to vary in levels of supply of fine sediment and seeds. 6. Our findings support the hypothesis that the fundamental influence of a riverine ecosystem‐engineering species on slowing fluid flow links the habitat creation process of sediment sorting and retention to seed trapping. We suggest the process is applicable to a wide range of aquatic and riparian vegetation. We also suggest that the mono‐specific and competitive growth, which is typical of these engineering species, will strongly influence the recruitment of trapped seeds.  相似文献   

10.
Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems. This shortcoming is especially evident with regard to trophic structure and energy flow. We used natural abundances of carbon and nitrogen isotopes to examine patterns of material flow in ten large-river food webs characterized by different landscape-scale hydrologic characteristics (low-gradient river, high-gradient river, river stretches downstream of reservoirs, and reservoirs), and tested predictions from three ecosystem concepts commonly applied to large-rivers: The River Continuum Concept, The Flood Pulse Concept and the Riverine Productivity Model. Carbon derived from aquatic C3 plants and phytoplankton were the dominant energy sources supporting secondary consumers across the ten large-river food webs examined, but relative contributions differed significantly among landscape types. For low-gradient river food webs, aquatic C3 plants were the principal carbon source, contributing as much as 80% of carbon assimilated by top consumers, with phytoplankton secondarily important. The estimated relative importance of phytoplankton was greatest for food webs of reservoirs and river stretches downriver from impoundments, although aquatic C3 plants contributed similar amounts in both landscape types. Highest 99th percentile source contribution estimates for C4 plants and filamentous algae (both approximately 40%) were observed for high-gradient river food webs. Our results for low-gradient rivers supported predictions of the Flood Pulse Concept, whereas results for the three other landscape types supported the Riverine Productivity Model to varying degrees. Incorporation of landscape-scale hydrologic or geomorphic characteristics, such as river slope or floodplain width, may promote integration of fluvial ecosystem concepts. Expanding these models to include hydrologically impacted landscapes should lead to a more holistic understanding of ecosystem processes in large-river systems.  相似文献   

11.
Temporary rivers within the Nyaodza-Gachegache subcatchment in northwestern Zimbabwe were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Macroinvertebrate communities of intermittent and ephemeral rivers displayed significant differences in the number of taxa, macroinvertebrate abundance, Shannon and Simpson diversity indices and in size class structure. Intermittent sites were characterised by higher numbers of taxa, diversity and Ephemeroptera and Trichoptera richness compared to ephemeral sites. The fauna of ephemeral sites was dominated by a single taxon (Afrobaetodes) (Ephemeroptera, Baetidae) whilst larger sized taxa (e.g. Elassoneuria (Ephemeroptera, Oligoneuriidae), Dicentroptilum (Ephemeroptera, Baetidae), Aethaloptera (Trichoptera, Hydropsychidae), Pseudagrion (Odonata, Coenagrionidae) and Tholymis (Odonata, Libellulidae) were exclusively restricted to intermittent sites. Clear differences were observed between sand, gravel, cobble and vegetation habitats. Vegetation and cobbles supported distinct communities, with some taxa exclusively restricted either to vegetation (e.g. Pseudagrion, Leptocerina (Trichoptera, Leptoceridae), Cloeon (Ephemeroptera, Baetidae), Afronurus (Ephemeroptera, Heptageniidae) and Povilla (Ephemeroptera, Polymitarcidae) or cobble (e.g. Aethaloptera and Dicentroptilum) habitats. In terms of ensuring optimum diversity within the subcatchment, we consider conservation of critical habitats (cobbles and vegetation) and maintenance of natural flows as the appropriate management actions. Handling editor: D. Dudgeon  相似文献   

12.

Aims

Rivers are important corridors for the movement, migration and dispersal of aquatic organisms, including seeds from riparian plants. Although tropical dry forests (TDF) are among the most extensive and floristically rich ecosystems of tropical habitats, and the most globally endangered ecosystem, less attention has been given to riparian corridors within this ecosystem. Although most TDFs manifest peak seed dispersal during dry seasons, we hypothesized that riparian corridors may show a dispersal peak during the rainy season, due to an anticipated ‘sweep or drag effect’, resulting from river overflow and bank erosion. Our main aims were to investigate whether there were any differences in the seed communities transported by the river to sites in rainy as opposed to dry seasons, and to evaluate any possible relationship between the riparian seed community and river flow.

Location

Amacuzac River, drainage of the Balsas basin, State of Morelos, Mexico.

Methods

To evaluate the above assumption, we associated Amacuzac River flow with the number of species and seeds dispersed by water. We also characterized and evaluated differences between seed communities transported by the river during the rainy and dry seasons, and between four different sites located along the river. We used univariate and ordination NMDS techniques to evaluate patterns between seasons at the community level.

Results

Forty‐five plant species were identified from 909 seeds collected from the river. The composition of riparian seed communities was markedly different between seasons but not between sites. Seed abundances were significantly higher in the rainy than in the dry season and varied between sites. Seed species diversity in the river (H’ = 1.6–1.9) showed no significant differences between seasons or sites, but species assemblages and dominance varied according to season. Ordination techniques and subsequent fitting analyses showed that seed species composition was positively associated with river flow.

Conclusions

Seed dispersal patterns generated by rivers are significant mechanisms for structuring the composition and distribution of the riparian plant community in Mexican TDF. Varying species assemblages and seed abundance dispersed by the river throughout the year is a relevant and until now unknown consequence that may affect the dynamics and composition of riparian plant communities in this region. This study initiative will promote new avenues of research regarding plant establishment and succession.  相似文献   

13.
14.
Aquatic and riparian ecosystems are known to be highly vulnerable to invasive alien species (IAS), especially when subjected to human-induced disturbances. In the last three decades, we have witnessed a growing increase in plant invasions in Portugal and Spain (Iberian Peninsula, south-western Europe), with very detrimental economic, social and ecological effects. Some of these species, such as the giant reed (Arundo donax L.) and the water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub.), number among the world's worst weeds. We present an appraisal of this invasive alien river flora and the most problematic aquatic weeds. We review various aspects of invasion ecology, including spatial and temporal patterns of invasion, species invasiveness, species traits of invasive weeds, and relationships between human disturbance in rivers and surrounding areas and invasibility, and contextualize them in overall state-of-the-art terms. We also acknowledge the use of IAS as bioindicators of the ecological quality of rivers, wetlands and riparian zones. Remote-sensing tools and Geographic Information Systems for detecting and monitoring IAS in Iberian rivers are presented.  相似文献   

15.
Non-native vegetation in the riparian zone impacts on water temperatures, flow patterns, degree of shading, channel modification, and changes to natural sediment loads. Freshwater ecosystems in the Garden Route Initiative planning domain are of particular conservation value, because of the rich Gondwanaland relict aquatic macroinvertebrate fauna found in the rivers there, which are vulnerable to thermal changes. Data were collected during 2013 and 2014 at 19 sites on seven river systems between George and Knysna in the southern Cape, South Africa. These included 12 months of hourly water temperatures at all sites, and quantitative sampling of aquatic macroinvertebrates at ten sites. Each site was characterised in terms of water quality (pH, conductivity and turbidity) and general characteristics, including impacts such as density of non-native riparian trees. At the family level, aquatic macroinvertebrate communities showed variation between sites and seasons. Differences were more pronounced on the basis of natural land cover type (fynbos versus indigenous forest) than densities of non-native invasive riparian vegetation. Conservation of these river systems will depend on maintaining a mosaic of natural vegetation types.  相似文献   

16.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

17.
  • Alpine rivers are, despite anthropogenic water flow regulation, still often highly dynamic ecosystems. Plant species occurring along these rivers are subject to ecological disturbance, mainly caused by seasonal flooding. Gypsophila repens typically grows at higher altitudes in the Alps, but also occurs at lower altitudes on gravel banks directly along the river and in heath forests at larger distances from the river. Populations on gravel banks are considered non‐permanent and it is assumed that new individuals originate from seed periodically washed down from higher altitudes. Populations in heath forests are, in contrast, permanent and not regularly provided with seeds from higher altitudes through flooding. If the genetic structure of this plant species is strongly affected by gene flow via seed dispersal, then higher levels of genetic diversity in populations but less differentiation among populations on gravel banks than in heath forests can be expected.
  • In this study, we analysed genetic diversity within and differentiation among 15 populations of G. repens from gravel banks and heath forests along the alpine River Isar using amplified fragment length polymorphisms (AFLP).
  • Genetic diversity was, as assumed, slightly higher in gravel bank than in heath forest populations, but genetic differentiation was, in contrast to our expectations, comparable among populations in both habitat types.
  • Our study provides evidence for increased genetic diversity under conditions of higher ecological disturbance and increased seed dispersal on gravel banks. Similar levels of genetic differentiation among populations in both habitat types can be attributed to the species' long lifetime, a permanent soil seed bank and gene flow by pollinators among different habitats/locations.
  相似文献   

18.
1. In temporary aquatic habitats, time is probably the dominant environmental factor affecting community composition, mainly by setting constraints on colonization success and the replacement of taxa over time. The mechanism and effect of a decreasing inundation period on community development, mostly in terms of truncation, are still poorly documented. The permanent and ephemeral components of temporary communities are expected to be differently influenced by the degree of persistence of the habitat. 2. To study the effect of time on invertebrate community assembly and dynamics in a short duration type of temporary aquatic habitat, we monitored 16 ephemeral rock pools which persisted from less than a week to about 1 month at two rock pool sites in semi‐arid south‐eastern Botswana. Data were collected every 2 days during a full inundation cycle. 3. All communities were initially assembled by permanent residents recolonizing the habitat from egg banks and were later joined by actively dispersing ephemeral taxa. Species replacements only occurred in two pools. Concurrent with a decrease in the densities of Branchipodopsis wolfi, population sizes of Leberis sp. and Culicidae (Aedes sp. and Anopheles sp.) increased in these pools. Although it was possible to distinguish two successive phases at one rock pool site, community assembly was generally a gradual process determined by dispersal strategies of the inhabitants. Additional rains after initial filling triggered dispersal by ephemeral taxa, mainly Micronecta youngiana and Hydroglyphus infirmus, and positively influenced colonization success. 4. Decreasing persistence shortens community development down to a critical point below which lack of time eliminates the possibility of species replacement. Based on these findings, we define ephemeral waters as aquatic habitats lacking species replacements. Other temporary water types have a relatively longer persistence, permitting successional replacement of species.  相似文献   

19.
Despite the importance of rivers in Amazonian biogeography, avian distribution patterns in river‐created habitats (i.e., floodplain forests) have been sparsely addressed. Here, we explore geographic variation in floodplain forest avifaunas, specifically regarding one of the most striking aspects of the Amazon: the diversity of river “colors” (i.e., types, based on the color of the water). We sampled the avifauna at 30 sites, located in 17 different rivers (nine black‐ and eight whitewater), in the Rio Negro basin, northwestern Brazil. Our sampling comprised ten 15‐min point‐counts per site, distributed every 500–1000 m along the river. We recorded a total of 352 bird species, many of which occurred in both river types. Although bird species richness was similar among rivers, we found significant differences in species composition. Nearly 14 percent of the species were significantly associated with one or the other river type. Most floodplain forest specialists occurred predominantly in whitewater rivers, whereas species that are typically associated with white‐sand habitats occurred in blackwater. Despite significant distinctions between river types, occurrence patterns and levels of habitat association differed among indicator species and may vary in the same species throughout its global distribution. There were also “intermediate” avifauna in some of our sites, suggesting that continuous parameters characterizing river types structure species turnover. The water color‐based classification of Amazonian rivers represents a simple and powerful predictor of the floodplain forest avifauna, offering a stimulating starting point for understanding patterns of floodplain bird distributions and for prioritizing conservation efforts in these overlooked habitats. Abstract in Portuguese is available with online material.  相似文献   

20.
The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events. Flow permanence was also critical in determining the community response to the spate flows. Following streambed drying at temporary sites, the surficial sediments overlying the karstic bedrock functioned as an effective refugium for several taxa. The development of aquatic insects following experimental rehydration indicated that these taxa survived in dewatered sediments as desiccation-resistant eggs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Sonja Stendera  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号