首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. RESULTS: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. CONCLUSIONS: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.  相似文献   

2.
Pleiotrophin (PTN, Ptn) is an 18kDa secretory cytokine that is expressed in many human cancers, including glioblastoma. In previous experiments, interruption of the constitutive PTN signaling in human U87MG glioblastoma cells that inappropriately express endogenous Ptn reversed their rapid growth in vitro and their malignant phenotype in vivo. To seek a mechanism for the effect of the dominant-negative PTN, flow cytometry was used to compare the profiles of U87MG cells and four clones of U87MG cells that express the dominant-negative PTN (U87MG/PTN1-40 cells); here, we report that the dominant-negative PTN in U87MG cells induces tetraploidy and aneuploidy and arrests the tetraploid and aneuploid cells in the G1 phase of the cell cycle. The data suggest that PTN signaling may have a critical role in chromosomal segregation and cell cycle progression; the data suggest induction of tetraploidy and aneuploidy in U87MG glioblastoma cells may be an important mechanism that contributes to the loss of the malignant phenotype of U87MG cells.  相似文献   

3.
目的:通过对研究脐带间充质干细胞(Umbilical cord mesenchymalstellcells,UCMSCs)与人恶性胶质母细胞瘤细胞U87MG细胞(U87 Malignant glioma cells)体外共培养,模拟肿瘤生长的内环境,以及其对U87MG细胞增值作用的影响及肿瘤细胞与间充质干细胞的共培养方法。方法:提取人脐带间充质干细胞进行体外培养、扩增,用MTT法测定uMSCS上清液对U87MG的影响,用瑞士染色法检测U87MG形态学变化。结果:MTT比色法结果显示UMSCS对U87MG有抑制作用。96小时培养后1:8、1:4、1:2及未稀释的UMSCs上清液对u87MG的抑制率分别为17%,24%,37.2%及46.4%,u87MG细胞形态亦随着培养时间的延长由多角形变为梭形,突起消失,细胞间骨架结构断裂。结论:通过对共培养前后U87MG与UMSCs共培养后形态学变化、生长曲线变化及对生长周期的影响作用的观察分析,得出UMSCs及其上清液对U87MG有抑制作用,而且呈时间及浓度依赖性。  相似文献   

4.
Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) is a divergent member of the transforming growth factor-beta (TGF-β) superfamily. NAG-1 plays remarkable multifunctional roles in controlling diverse physiological and pathological processes including cancer. Like other TGF-β family members, NAG-1 can play dual roles during cancer development and progression by negatively or positively modulating cancer cell behaviors. In glioblastoma brain tumors, NAG-1 appears to act as a tumor suppressor gene; however, the precise underlying mechanisms have not been well elucidated. In the present study, we discovered that overexpression of NAG-1 induced apoptosis in U87 MG, U118 MG, U251 MG, and T98G cell lines via the intrinsic mitochondrial pathway, but not in A172 and LN-229 cell lines. NAG-1 could induce the phosphorylation of PI3K/Akt and Smad2/3 in all six tested glioblastoma cell lines, except Smad3 phosphorylation in A172 and LN-229 cell lines. In fact, Smad3 expression and its phosphorylation were almost undetectable in A172 and LN-229 cells. The PI3K inhibitors promoted NAG-1-induced glioblastoma cell apoptosis, while siRNAs to Smad2 and Smad3 decreased the apoptosis rate. NAG-1 also stimulated the direct interaction between Akt and Smad3 in glioblastoma cells. Elevating the level of Smad3 restored the sensitivity to NAG-1-induced apoptosis in A172 and LN-229 cells. In conclusion, our results suggest that PI3K/Akt and Smad-dependent signaling pathways display opposing effects in NAG-1-induced glioblastoma cell apoptosis.  相似文献   

5.
Chromosome instability, a major property of cancer cells, is believed to promote mutations that establish malignant phenotypes. Centrosome hyperamplification and the consequential increase in the frequency of aberrant mitoses are the major causes of chromosome instability in cancer cells that lack the functional p53 tumor suppressor protein. Here, we examined dynamic changes of chromosome and centrosome behaviors during long-term culturing of primary epithelial cells derived from p53-null mice. The heterogeneity in the number of chromosomes per cell in the early to mid passage cell population diminished in late passage cells, giving rise to distinct subpopulations of cells. Concomitantly, centrosome hyperamplification that was observed at a high frequency in early to mid passage cells was suppressed in late passage cells. These results provide an explanation for the frequent observations that some cancer cell lines and tissues that lack functional p53 show normal centrosome behaviors and altered, yet relatively stable, chromosomes. Moreover, our in vitro findings may provide a model for possible genomic convergence in cultured cells. This may be analogous to the genomic convergence model proposed for in vivo tumor progression in which chromosome instability initially imposed during tumorigenesis becomes suppressed when neoplastic cells have acquired chromosome compositions that promise an optimal growth in a given environment.  相似文献   

6.
7.
8.
Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy.  相似文献   

9.
10.
Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.  相似文献   

11.
Using an innovative approach toward multiple carbon–carbon bond-formations that relies on the multifaceted catalytic properties of titanocene complexes we constructed a series of C1–C7 analogs of curcumin for evaluation as brain and peripheral nervous system anti-cancer agents. C2-Arylated analogs proved efficacious against neuroblastoma (SK-N-SH & SK-N-FI) and glioblastoma multiforme (U87MG) cell lines. Similar inhibitory activity was also evident in p53 knockdown U87MG GBM cells. Furthermore, lead compounds showed limited growth inhibition in vitro against normal primary human CD34+hematopoietic progenitor cells. Taken together, the present findings indicate that these curcumin analogs are viable lead compounds for the development of new central and peripheral nervous system cancer chemotherapeutics with the potential for little effects on normal hematopoietic progenitor cells.  相似文献   

12.
The murine-derived clonal MC3T3-E1 cell is a well-studied osteoblast-like cell line. To understand the effects of serial passages on its cellular function, we examined changes in cell morphology, gap junctional intercellular communication (GJIC), proliferation, and osteoblastic function between early passage (<20) and late passage (>65) cells. MC3T3-E1 cells developed an elongated, spindle shape after multiple passages. Intercellular communication decreased significantly (33%) in late vs. early passage cells. Transforming growth factor-beta1 (TGF-beta1) stimulated cell proliferation in early passage cells and induced c-fos expression, while it inhibited proliferation in late passage cells. Using alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion as markers for osteoblastic function and differentiation, we demonstrated that both markers were significantly reduced after multiple cell passages. Bone morphogenetic protein-2 (BMP-2) significantly enhanced ALP activity and OC secretion in early passage cells while TGF-beta1 exerted an opposite effect. Both BMP-2 and TGF-beta1 had minimal effects on late passage cells. We conclude that serial passage alters MC3T3-E1 cell morphology, and significantly diminishes GJIC, osteoblastic function, TGF-beta1-mediated cell proliferation, and responsiveness to TGF-beta1 and BMP-2. Cell passage numbers should be clearly defined in functional studies involving MC3T3-E1 cells.  相似文献   

13.
14.
Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.  相似文献   

15.
To analyze the implication of PTEN in the control of tumor cell invasiveness, the canine kidney epithelial cell lines MDCKras-f and MDCKts-src, expressing activated Ras and a temperature-sensitive v-Src tyrosine kinase, respectively, were transfected with PTEN expression vectors. Likewise, the human PTEN-defective glioblastoma cell lines U87MG and U373MG, the melanoma cell line FM-45, and the prostate carcinoma cell line PC-3 were transfected. We demonstrate that ectopic expression of wild-type PTEN in MDCKts-src cells, but not expression of PTEN mutants deficient in either the lipid or both the lipid and protein phosphatase activities, reverted the morphological transformation, induced cell-cell aggregation, and suppressed the invasive phenotype in an E-cadherin-dependent manner. In contrast, overexpression of wild-type PTEN did not counteract Ras-induced invasiveness of MDCKras-f cells expressing low levels of E-cadherin. PTEN effects were not associated with marked changes in accumulation or phosphorylation levels of E-cadherin and associated catenins. Wild-type, but not mutant, PTEN also reverted the invasive phenotype of U87MG, U373MG, PC-3, and FM-45 cells. Interestingly, PTEN effects were mimicked by N-cadherin-neutralizing antibody in the glioblastoma cell lines. Our data confirm the differential activities of E- and N-cadherin on invasiveness and suggest that the lipid phosphatase activity of PTEN exerts a critical role in stabilizing junctional complexes and restraining invasiveness.  相似文献   

16.
8-Cl-cAMP and tiazofurin (TR) are anti-tumor agents that besides their antiproliferative effect, also induce differentiation of tumor cells. Although, these agents exert a profound effect on the same events of tumor cell life, it is thought that 8-Cl-cAMP and TR act by modulating the signal transduction pathway through distinct mechanisms. We have compared their effect on two human glioma cell lines (U87 MG and U251 MG) and examined if there is selectivity in their action toward normal human astrocytes.  相似文献   

17.
Malignant glioblastoma is one of the most common malignant tumors in the neurological system. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, appears to exhibit various biological activities, including antitumor effect, but the function and mechanism of this new agent on glioblastoma cells has not previously been determined. In the present study, we investigated the proliferation change of human glioblastoma U87MG cells exposured to different concentrations (0.9-14.8 microM) of Tubeimoside V (1) for a certain time. The results showed that Tubeimoside V (1) significantly suppressed U87MG cell proliferation in a time- and dose-dependent manner (IC(50) = 3.6 microM). Flow cytometric analysis of DNA in U87MG cells showed that Tubeimoside V (1) induces the prominent appearance of a sub-G1 peak in the cell cycle suggestive of apoptosis. Furthermore, U87MG cells' treatment with Tubeimoside V (1) resulted in nuclear condensation with apoptotic bodies observed by both fluorescence and electron microscopy. The result of annexin V/PI assay showed that phosphatidylserine externalization began after treatment, and then increased in the following 24h. Molecular changes explored through Western-blot staining showed Tubeimoside V (1) decreased the expression levels of Bcl-2 protein and increased the expression levels of Bax protein. The novel findings suggest that the cytotoxic actions of Tubeimoside V (1) toward U87MG cells result from the induction of cell apoptosis. Overall, our data demonstrate that Tubeimoside V (1) is an efficient apoptotic killing agent of glioblastoma cells and suggest that this mechanism may play a critical role in anti-tumor chemotherapy.  相似文献   

18.
Analysis of fibronectin synthesized by human fibroblasts, at different times during serial subcultivation, reveals functional differences. Fibronectin isolated from late passage cells is defective in promoting cell adhesion, cell spreading, and the formation of focal contacts. These changes are not the result of an inability of late passage cells to interact with fibronectin, since late passage cells become adhesive and form focal contacts in the presence of fibronectin isolated from early passage cells. Therefore, we conclude that late passage cellular fibronectin derived from late passage cells cannot support the cell substrate interactions.  相似文献   

19.
Two major mechanisms of intracellular protein degradation, autophagy and the ubiquitin-proteasome pathway, operate in mammalian cells. PTEN, which is frequently mutated in glioblastomas, is a tumor suppressor gene that encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase class I/AKT/mTOR pathway, which is a key regulator of autophagy. Here, we investigated in U87MG human glioma cells the role of PTEN in the regulation of autophagy and the ubiquitin-proteasome pathway, because both are functionally linked and are relevant in cancer progression. Since U87MG glioma cells lack a functional PTEN, we used stable clones that express, under the control of a tetracycline-inducible system (Tet-on), wild-type PTEN and two of its mutants, G129E-PTEN and C124S-PTEN, which, respectively, lack the lipid phosphatase activity only and both the lipid and the protein phosphatase activities of this protein. Expression of PTEN in U87MG glioma cells decreased proteasome activity and also reduced protein ubiquitination. On the contrary, expression of PTEN increased the autophagic flux and the lysosomal mass. Interestingly, and although PTEN negatively regulates the phosphatidylinositol 3-kinase class I/AKT/mTOR signaling pathway by its lipid phosphatase activity, both effects in U87MG cells were independent of this activity. These results suggest a new mTOR-independent signaling pathway by which PTEN can regulate in opposite directions the main mechanisms of intracellular protein degradation.  相似文献   

20.
We describe the steady-state levels and molecular and cellular repair of DNA double-strand breaks (DSBs) in tetraiodothyroacetic acid (tetrac)-treated human U87MG glioblastoma cells after x-irradiation in vitro. This study was conducted to provide a basis for our previous observation of radiosensitization and inhibition of cellular recovery after irradiation of tetrac-exposed GL261 murine brain tumor cells. We used the neutral comet assay to assess DSBs, and found that the steady-state DSB levels as indicated by the mean tail moment after a 1 h application of 2 nM tetrac at 37oC was increased from a value of 6.1 in control cells to 12.4 in tetrac treated cells at 0 radiation dose. However, at all radiation doses, the induction curves of DSBs were parallel, suggesting that no interaction of tetrac with the initial physical-chemical actions of ionizing radiation occurred. Flow cytometric measurements indicated that this increase was not due to alterations in the relative percentages of U87MG cells throughout the cell cycle. In split-dose DNA repair studies we found that tetrac decreased the repair rate of U87 cells by a factor of 72.5%. This suggests that the radiosensitization from graded single doses of x-rays occurs as a consequence of tetrac inhibition of the post-irradiation repair process. These results link the previously noted changes in cellular endpoints to a molecular endpoint. That is, tetrac produces increased numbers of DSBs in the unirradiated steady-state coupled with a decreased repair rate of DSBs in fractionated radiation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号