首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein import into plant chloroplasts is a fascinating topic that is being investigated by many research groups. Since the majority of chloroplast proteins are synthesised as precursor proteins in the cytosol, they have to be posttranslationally imported into the organelle. For this purpose, most preproteins are synthesised with an N-terminal presequence, which is both necessary and sufficient for organelle recognition and translocation initiation. The import of preproteins is facilitated by two translocation machineries in the outer and inner envelope of chloroplasts, the Toc and Tic complexes, respectively. Translocation of precursor proteins across the envelope membrane has to be highly regulated to react to the metabolic requirements of the organelle. The aim of this review is to summarise the events that take place at the translocation machineries that are known so far. In addition, we focus in particular on alternative import pathways and the aspect of regulation of protein transport at the outer and inner envelope membrane.  相似文献   

2.
Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs) are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5′UTR-end mediates the functional import of Green Fluorescent Protein (GFP) mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5′UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.  相似文献   

3.
Protein import into chloroplasts   总被引:2,自引:0,他引:2  
Most chloroplastic proteins are encoded in the nucleus, synthesized on cytosolic ribosomes and subsequently imported into the organelle. In general, proteins destined for the chloroplast are synthesized as precursor proteins with a cleavable N-terminal presequence that mediates routing to the inside of the chloroplast. These precursor proteins have to be targeted to the correct organellar membrane surface after their release from the ribosome and furthermore they have to be maintained in a conformation suitable for translocation across the two envelope membranes. Recognition and import of most chloroplastic precursor proteins are accomplished by a jointly used translocation apparatus. Different but complementary studies of several groups converged recently in the identification of the outer envelope proteins OEP86, OEP75, OEP70 (a Hsp 70-related protein), OEP34, and of the inner envelope protein IEP110 as components of this translocation machinery. None of these proteins, except for OEP70, shows any homology to components of other protein translocases. The plastid import machinery thus seems to be an original development in evolution. Following translocation into the organelle, chloroplastic proteins are sorted to their suborganellar destination, i.e., the inner envelope membrane, the thylakoid membrane, and the thylakoid lumen. This structural and evolutionary complexity of chloroplasts is reflected by a variety of routing mechanisms by which proteins reach their final location once inside the organelle. This review will focus on recent advances in the identification of components of the chloroplastic protein import machinery, and new insights into the pathways of inter-and intraorganellar sorting.  相似文献   

4.
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport—all of which need to be tightly regulated and perfectly coordinated to accommodate the cells’ needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.  相似文献   

5.
Protein transport into and within chloroplasts   总被引:5,自引:0,他引:5  
The chloroplast is a complex organelle which carries out a wide range of metabolic processes such as light capture and the biosynthesis of carbohydrates, fatty acid and amino acids. This organelle consists of three separate membrane systems which enclose three distinct soluble phases. Most of the chloroplast proteins are imported from the cytosol and directed into the six different compartments. This import and intraorganellar sorting process makes the chloroplast an interesting and promising system for the analysis of how proteins interact with and are translocated across biological membranes.  相似文献   

6.
Transport of cytoplasmically synthesized precursor proteins into chloroplasts, like the protein transport systems of mitochondria and the endoplasmic reticulum, appears to require the action of molecular chaperones. These molecules are likely to be the sites of the ATP hydrolysis required for precursor proteins to bind to and be translocated across the two membranes of the chloroplast envelope. Over the past decade, several different chaperones have been identified, based mainly on their association with precursor proteins and/or components of the chloroplast import complex, as putative factors mediating chloroplast protein import. These factors include cytoplasmic, chloroplast envelope-associated and stromal members of the Hsp70 family of chaperones, as well as stromal Hsp100 and Hsp60 chaperones and a cytoplasmic 14-3-3 protein. While many of the findings regarding the action of chaperones during chloroplast protein import parallel those seen for mitochondrial and endoplasmic reticulum protein transport, the chloroplast import system also has unique aspects, including its hypothesized use of an Hsp100 chaperone to drive translocation into the organelle interior. Many questions concerning the specific functions of chaperones during protein import into chloroplasts still remain that future studies, both biochemical and genetic, will need to address.  相似文献   

7.
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.  相似文献   

8.
《Autophagy》2013,9(3):209-211
Precursor aminopeptidase I oligomerizes in the cytosol and is imported into the vacuole as a dodecamer via the cytoplasm-to-vacuole targeting (Cvt) pathway or autophagy. However, this is not the only example for the import of oligomeric protein complexes into an organelle. During peroxisome biogenesis folded and oligomeric proteins can be imported into the lumen of the organelle. The mechanism of this transport is still unknown. In this article, we point out mechanistic parallels between peroxisome biogenesis and the Cvt pathway or autophagy. Furthermore, we summarize our recently published investigation on a possible overlap between these pathways. Our investigation revealed new insights into autophagy and the Cvt pathway and possible new functions of Cvt4p, Cvt8p and Atg14p in organelle biogenesis or stability.

Addendum to:

Topogenesis of peroxisomal proteins does not require a functional cytoplasm-to-vacuole transport

Ines Heiland and Ralph Erdmann

Eur J Cell Biol 2005; 84:799-807  相似文献   

9.
Chloroplasts contain several thousand different proteins, of which more than 95% are encoded on nuclear genes, synthesized in the cytosol as precursor proteins, and imported into the organelle. The major pathways for import and routing have been described; a general import apparatus in the chloroplast envelope and several ancestral translocases in the thylakoid membranes. In this update we focus on some interesting and emerging areas: the Tat translocase, which operates in parallel with the Sec system but transports folded proteins; different routes to the envelope membranes, which promises an understanding of the ways the Tic apparatus sorts transmembrane domains (TMDs) and may also uncover developmental relationships between envelope and thylakoids; and novel routes for proteins into chloroplasts including delivery from the secretory system.  相似文献   

10.
The elaborate compartmentalization of plant cells requires multiple mechanisms of protein targeting and trafficking. In addition to the organelles found in all eukaryotes, the plant cell contains a semi-autonomous organelle, the plastid. The plastid is not only the most active site of protein transport in the cell, but with its three membranes and three aqueous compartments, it also represents the most topologically complex organelle in the cell. The chloroplast contains both a protein import system in the envelope and multiple protein export systems in the thylakoid. Although significant advances have identified several proteinaceous components of the protein import and export apparatuses, the lipids found within plastid membranes are also emerging as important players in the targeting, insertion, and assembly of proteins in plastid membranes. The apparent affinity of chloroplast transit peptides for chloroplast lipids and the tendency for unsaturated MGDG to adopt a hexagonal II phase organization are discussed as possible mechanisms for initiating the binding and/or translocation of precursors to plastid membranes. Other important roles for lipids in plastid biogenesis are addressed, including the spontaneous insertion of proteins into the outer envelope and thylakoid, the role of cubic lipid structures in targeting and assembly of proteins to the prolamellar body, and the repair process of D1 after photoinhibition. The current progress in the identification of the genes and their associated mutations in galactolipid biosynthesis is discussed. Finally, the potential role of plastid-derived tubules in facilitating macromolecular transport between plastids and other cellular organelles is discussed.  相似文献   

11.
Many chloroplast proteins are synthesized in the cytoplasm as precursors which contain an amino terminal transit peptide. These precursors are subsequently imported into chloroplast and targeted to one of several organellar locations. This import is mediated by the transit peptide, which is cleaved off during import. We have used the transit peptides of ferredoxin (chloroplast stroma) and plastocyanin (thylakoid lumen) to study chloroplast protein import and intra-organellar routing toward different compartments. Chimeric genes were constructed that encode precursor proteins in which the transit peptides are linked to yeast mitochondrial manganese superoxide dismutase. Chloroplast protein import and localization experiments show that both chimeric proteins are imported into the chloroplast stroma and processed. The plastocyanin transit sequence did not direct superoxide dismutase to the thylakoids; this protein was found in the stroma as an intermediate that still contains part of the plastocyanin transit peptide. The organelle specificity of these chimeric precursors reflected the transit peptide parts of the molecules, because neither the ferredoxin and plastocyanin precursors nor the chimeric proteins were imported into isolated yeast mitochondria.  相似文献   

12.
K Cline  R Henry  C Li    J Yuan 《The EMBO journal》1993,12(11):4105-4114
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

13.
The last few years has seen an ever-increasing interest in the exploitation of microalgae as recombinant platforms for the synthesis of novel bioproducts. These could be biofuel molecules, speciality enzymes, nutraceuticals, or therapeutic proteins, such as antibodies, hormones, and vaccines. This exploitation requires the development of new genetic engineering technologies for those fast-growing, robust species suited for intensive commercial cultivation in bioreactor systems. In particular, there is a need for routine methods for the genetic manipulation of the chloroplast genome, for two reasons: firstly, the chloroplast genetic system is well-suited to the targeted insertion into the genome and high-level expression of foreign genes; secondly, the organelle is the site of numerous biosynthetic pathways and therefore represents the obvious “chassis,” on which to bolt new metabolic pathways that divert the carbon fixed by photosynthesis into novel hydrocarbons, pigments, etc. Stable transformation of the algal chloroplast was first demonstrated in 1988, using the model chlorophyte, Chlamydomonas reinhardtii. Since that time, tremendous advances have been made in the development of sophisticated tools for engineering this particular species, and efforts to transfer this technology to other commercially attractive species are starting to bear fruit. In this article, we review the current field of algal chloroplast transgenics and consider the prospects for the future.  相似文献   

14.
Cytoskeleton-associated motor proteins typically drive organelle movements in eukaryotic cells in a manner that is tightly regulated, both spatially and temporally. In the past year, a novel organelle transport mechanism utilizing actin polymerization was described. Important advances were also made in the assignment of functions to several new motors and in our understanding of how motor proteins are regulated during organelle transport. In addition, insights were gained into how and why organelles are transported cooperatively along the microtubule and actin cytoskeletons, and into the importance of motor-mediated transport in the organization of the cytoskeleton itself.  相似文献   

15.
Heiland I  Erdmann R 《Autophagy》2006,2(3):209-211
Precursor aminopeptidase I oligomerizes in the cytosol and is imported into the vacuole as a dodecamer via the cytoplasm-to-vacuole targeting (Cvt) pathway or autophagy. However, this is not the only example for the import of oligomeric protein complexes into an organelle. During peroxisome biogenesis folded and oligomeric proteins can be imported into the lumen of the organelle. The mechanism of this transport is still unknown. In this article, we point out mechanistic parallels between peroxisome biogenesis and the Cvt pathway or autophagy. Furthermore, we summarize our recently published investigation on a possible overlap between these pathways. Our investigation revealed new insights into autophagy and the Cvt pathway and possible new functions of Cvt4p, Cvt8p and Atg14p in organelle biogenesis or stability.(1).  相似文献   

16.
Among the protein translocation pathways of the thylakoid membrane in chloroplasts, the DeltapH/TAT pathway is unique in several aspects. In vitro transport assays with isolated chloroplasts or thylakoids have defined the trans-thylakoidal proton gradient as the sole requirement for effecting transport. From these studies, evidence has also accumulated indicating that, in contrast to the remaining protein transport pathways present in the thylakoid membrane, the DeltapH/TAT pathway is able to mediate the transport of folded proteins. The present work has established a novel approach to demonstrate the transport of folded proteins by this pathway in vivo. For this purpose, Arabidopsis thaliana plants were stably transformed with gene constructs expressing enhanced green fluorescent protein (EGFP) alone or fused to the transit peptides of different chloroplast proteins under the control of the 35S CAMV promoter. The intracellular and intraorganellar distribution of EGFP in the resulting transformants showed that while all the chloroplast transit peptides efficiently mediated the transport of EGFP into plastids, only those specific for the DeltapH/TAT pathway were able to direct the protein into the thylakoid lumen as well. This could be demonstrated both by fluorescence and immunoelectron microscopy. Analysis of isolated and fractionated chloroplasts using western blot and spectrofluorometric assays confirmed the presence of folded EGFP solely within the thylakoid lumen of these lines. These results strongly suggest that the protein adopts a folded state in the chloroplast stroma and thus, can only be translocated further into the chloroplast lumen by the DeltapH/TAT pathway.  相似文献   

17.
Rab proteins as membrane organizers   总被引:2,自引:0,他引:2  
Cellular organelles in the exocytic and endocytic pathways have a distinctive spatial distribution and communicate through an elaborate system of vesiculo-tubular transport. Rab proteins and their effectors coordinate consecutive stages of transport, such as vesicle formation, vesicle and organelle motility, and tethering of vesicles to their target compartment. These molecules are highly compartmentalized in organelle membranes, making them excellent candidates for determining transport specificity and organelle identity.  相似文献   

18.
Protozoan parasites of the phylum Apicomplexa harbour a chloroplast-like organelle, the apicoplast. The biosynthetic pathways localized to this organelle are of cyanobacterial origin and therefore offer attractive targets for the development of new drugs for the treatment of malaria and toxoplasmosis. The apicoplast also provides a unique system to study the cell biology of endosymbiosis. This organelle is the product of secondary endosymbiosis, the marriage of an alga and an auxotrophic eukaryote. This origin has led to a fascinating set of novel cellular mechanisms that are clearly distinct from those employed by the plant chloroplast. Here we explore how the apicoplast interacts with its 'host' to secure building blocks for its biogenesis and how the organelle is divided and segregated during mitosis. Considerable advances in parasite genetics and genomics have transformed apicomplexans, long considered hard to study, into highly tractable model organisms. We discuss how these resources might be marshalled to develop a detailed mechanistic picture of apicoplast cell biology.  相似文献   

19.
Uniacke J  Zerges W 《The Plant cell》2007,19(11):3640-3654
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacterium-like ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.  相似文献   

20.
Routing of cytosolically synthesized precursor proteins into chloroplasts is a specific process which involves a multitude of soluble and membrane components. In this review we wil1 focus on early events of the translocation pathway of nuclear coded plastidic precursor proteins and compare import routes for polypeptide of the outer chloroplast envelope to that of internal chloroplast compartments. A number of proteins housed in the chloroplast envelopes have been implied to be involved in the translocation process, but so far a certain function has not been assigned to any of these proteins. The only exception could be an envelope localized hsc 70 homologue which could retain the import competence of a precursor protein in transit into the organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号