首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the differential display method combined with a cell line that carries a well-controlled expression system for wild-type p53, we isolated a p53-inducible gene, termed p53DINP1 (p53-dependent damage-inducible nuclear protein 1). Cell death induced by DNA double-strand breaks (DSBs), as well as Ser46 phosphorylation of p53 and induction of p53AIP1, were blocked when we inhibited expression of p53DINP1 by means of an antisense oligonucleotide. Overexpression of p53DINP1 and DNA damage by DSBs synergistically enhanced Ser46 phosphorylation of p53, induction of p53AIP1 expression, and apoptotic cell death. Furthermore, the protein complex interacting with p53DINP1 was shown to phosphorylate Ser46 of p53. Our results suggest that p53DINP1 may regulate p53-dependent apoptosis through phosphorylation of p53 at Ser46, serving as a cofactor for the putative p53-Ser46 kinase.  相似文献   

2.
We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.  相似文献   

3.
4.
《Molekuliarnaia biologiia》2005,39(3):445-456
Malignant melanoma has poor prognosis because of its high metastatic potential and resistance to chemotherapy. A possible approach to more effective therapy is induction of p53-dependent apoptosis. This approach is promising, since the wild-type p53 is expressed in most melanomas. An attempt was made to estimate the functional activity of p53 in several malignant melanoma cell lines. Most lines were characterized by a high protein level and nuclear localization of p53. All cell lines expressing the wild-type p53 showed stabilization of p53, its translocation into the nucleus, and activation of several target genes in response to DNA-damaging agents, suggesting that p53 was functionally active. A high-molecular-weight protein localized in the cytoplasm and mimicking a p53 epitope was found in several cell lines. It was shown that the DO-1 epitope of this protein does not derive from p53, ruling out cytoplasmic retention of p53 in melanoma cell lines. A mechanism of camptothecin-induced stabilization of p53 by decreasing the level of the HDM2 mRNA was described for melanoma cells but not for normal melanocytes, which suggested a differential effect of camptothecin on tumor-derived and primary cells.  相似文献   

5.
6.
7.
8.
PUMA, a novel proapoptotic gene, is induced by p53.   总被引:27,自引:0,他引:27  
  相似文献   

9.
10.
Vasopressin-activated Ca2+-mobilizing (VACM)-1 gene product is a 780-amino acid membrane protein that shares sequence homology with cullins, a family of genes involved in the regulation of cell cycle. However, when expressed in vitro, VACM-1 attenuates basal and vasopressin- and forskolin-induced cAMP production. Mutating the PKA-dependent phosphorylation site in the VACM-1 sequence (S730AVACM-1) prevents this inhibitory effect. To further examine the biological role of VACM-1, we studied the effect of VACM-1 and S730AVACM-1 proteins on cellular proliferation and gene expression in Chinese hamster ovary and COS-1 cells. Cellular proliferation of VACM-1-expressing cell lines was significantly lower compared with that of the vector-transfected cells, whereas it was significantly increased in S730AVACM-1-derived cell lines. Furthermore, expression of VACM-1 but not S730AVACM-1 protein retarded cytokinesis and prevented MAPK phosphorylation. Screening with the Human PathwayFinder-1 GEArray system and subsequent Western blot analysis demonstrated that VACM-1 induces p53 mRNA and protein expression. In summary, VACM-1 inhibits cellular growth by a mechanism that involves cAMP, MAPK phosphorylation, and p53 expression. mitogen-activated protein kinase; cytokinesis; vasopressin-activated calcium-mobilizing receptor  相似文献   

11.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   

12.
13.
14.
The tumor suppressor p53 regulates its own transcription.   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53. Analysis of RTVP-1 expression in nontransformed and transformed cells further supported p53-independent gene regulation. Using luciferase reporter and electrophoretic mobility shift assays we identified a p53 binding site within intron 1 of the mRTVP-1 gene. Overexpression of mRTVP-1 or hRTVP-1 induced apoptosis in multiple cancer cell lines including prostate cancer cell lines 148-1PA, 178-2BMA, PC-3, TSU-Pr1, and LNCaP, a human lung cancer cell line, H1299, and two isogenic human colon cancer cell lines, HCT116 p53(+/+) and HCT116 p53(-/-), as demonstrated by annexin V positivity, phase-contrast microscopy, and in selected cases 4',6'-diamidino-2-phenylindole staining and DNA fragmentation. Deletion of the signal peptide from the N terminus of RTVP-1 reduced its apoptotic activities, suggesting that a secreted and soluble form of RTVP-1 may mediate, in part, its proapoptotic activities.  相似文献   

19.
DNA damage induced by reactive oxygen species and several chemotherapeutic agents promotes both p53 and poly (ADP-ribose) polymerase (PARP) activation. p53 activation is well known to regulate apoptotic cell death, whereas robust activation of PARP-1 has been shown to promote a necrotic cell death associated with energetic collapse. Here we identify a novel role for p53 in modulating PARP enzymatic activity to regulate necrotic cell death. In mouse embryonic fibroblasts, human colorectal and human breast cancer cell lines, loss of p53 function promotes resistance to necrotic, PARP-mediated cell death. We therefore demonstrate that p53 can regulate both necrotic and apoptotic cell death, mutations or deletions in this tumor-suppressor protein may be selected by cancer cells to provide not only their resistance to apoptosis but also to necrosis, and explain resistance to chemotherapy and radiation even when it kills via non-apoptotic mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号