首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.  相似文献   

2.
Immunoglobulins (Igs) and T cell antigen receptors (TCRs) that undergo somatic diversification have not been identified in the two extant orders of jawless vertebrates, which occupy essential positions in terms of understanding the evolution of the emergence of adaptive immunity. Using a single motif-dependent PCR-based approach coupled with a vector that allows selection of cDNAs encoding secretion signal sequences, four different genes encoding Ig V-type domains were identified in the sea lamprey (Petromyzon marinus). One of the predicted proteins encoded by these genes shares structural characteristics with mammalian VpreB molecules, including the absence of a recognizable transmembrane region, a relatively high proportion of charged amino acids in its C-terminal tail and distinctive features of its secretion signal peptide. This is the first indication of a molecule related to the B cell receptor (BCR) complex in a species that diverged prior to the jawed vertebrates in which RAG-mediated adaptive immunity is first encountered.Sequences described in this paper have been deposited in GenBank, with accession numbers AY576797–AY576800.  相似文献   

3.
Homeobox genes in vertebrate evolution.   总被引:5,自引:0,他引:5  
A wide range of anatomical features are shared by all vertebrates, but absent in our closest invertebrate relatives. The origin of vertebrate embryogenesis must have involved the evolution of new regulatory pathways to control the development of new features, but how did this occur? Mutations affecting regulatory genes, including those containing homeobox sequences, may have been important: for example, perhaps gene duplications allowed recruitment of genes to new roles. Here I ask whether comparative data on the genomic organization and expression patterns of homeobox genes support this hypothesis. I propose a model in which duplications of particular homeobox genes, followed by the acquisition of gene-specific secondary expression domains, allowed the evolution of the neural crest, extensive organogenesis and craniofacial morphogenesis. Specific details of the model are amenable to testing by extension of this comparative approach to molecular embryology.  相似文献   

4.
5.
The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages.  相似文献   

6.
Embryonic modularity and functional modularity are two principles of brain organization. Embryonic modules are histogenetic fields that are specified by position-dependent expression of patterning genes. Within each embryonic module, secondary and higher-level pattern formation takes places during development, finally giving rise to brain nuclei and cortical layers. Defined subsets of these structures become connected by fiber tracts to form the information-processing neural circuits, which represent the functional modules of the brain. We review evidence that a group of cell adhesion molecules, the cadherins, provides an adhesive code for both types of modularity, based on a preferentially homotypic binding mechanism. Embryonic modularity is transformed into functional modularity, in part by translating early-generated positional information into an array of adhesive cues, which regulate the binding of functional neural structures distributed across the embryonic modules. Brain modularity may provide a basis for adaptability in evolution.  相似文献   

7.
1. The affinities of the specific vitamin D plasma transport proteins for 25-hydroxyergocalciferol and 25-hydroxycholecalciferol were studied in sixty three vertebrate species. 2. Fish, reptile, bird and monotreme plasma proteins bound 25-hydroxyergocalciferol considerably less efficiently than 25-hydroxycholecalciferol. 3. Vitamin D transport proteins from twenty-two placental mammals bound 25-hydroxyergocalciferol and 25-hydroxycholecalciferol with equal efficiency. 4. Proteins from nine mammals bound 25-hydroxycholecalciferol 10-30% more efficiently than 25-hydroxyergocalciferol.  相似文献   

8.
The Pitx homeobox gene family has important roles in vertebrate pituitary, eye, branchial arch, hindlimb and brain development, as well as a key function in regulating left-right asymmetry. Here we report the isolation of a Pitx gene, PitxA, from two lamprey species, Lampetra planeri and Petromyzon marinus. Molecular phylogenetics show PitxA is most closely related to the Pitx1 and Pitx2 genes of jawed vertebrates, however resolution in the trees is insufficient to determine if PitxA is orthologous to a specific jawed vertebrate gene. In situ hybridisation studies show lamprey PitxA is expressed in the developing nasohypohyseal system and stomodeal ectoderm from early development through to early ammocoette larvae. PitxA expression was also detected in several areas of the developing brain, in the developing optic system, in pharyngeal endoderm and endostyle and in the lateral somite. These results show some key aspects of Pitx gene expression in gnathostomes are primitive for all living vertebrates.  相似文献   

9.
Mesoderm-inducing factors in early vertebrate development.   总被引:11,自引:3,他引:11       下载免费PDF全文
J C Smith 《The EMBO journal》1993,12(12):4463-4470
  相似文献   

10.

Background  

The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating the cognitive abilities which are being favored. On the other hand, the 'concerted evolution hypothesis' argues that developmental constraints limit such mosaic evolution and instead the size of the entire brain varies in response to selection on any of its constituent parts. To date, analyses of these hypotheses of brain evolution have been limited to mammals and birds; excluding Actinopterygii, the basal and most diverse class of vertebrates. Using a combination of recently developed phylogenetic multivariate allometry analyses and comparative methods that can identify distinct rates of evolution, even in highly correlated traits, we studied brain structure evolution in a highly variable clade of ray-finned fishes; the Tanganyikan cichlids.  相似文献   

11.
Vertebrates have repeatedly filled and partitioned the terrestrial ecosystem, and have been able to occupy new, previously unexplored habitats throughout their history on land. The arboreal ecospace is particularly important in vertebrate evolution because it provides new food resources and protection from large ground-dwelling predators. We investigated the skeletal anatomy of the Late Permian (approx. 260 Ma) herbivorous synapsid Suminia getmanovi and performed a morphometric analysis of the phalangeal proportions of a great variety of extant and extinct terrestrial and arboreal tetrapods to discern locomotor function and habitat preference in fossil taxa, with special reference to Suminia. The postcranial anatomy of Suminia provides the earliest skeletal evidence for prehensile abilities and arboreality in vertebrates, as indicated by its elongate limbs, intrinsic phalangeal proportions, a divergent first digit and potentially prehensile tail. The morphometric analysis further suggests a differentiation between grasping and clinging morphotypes among arboreal vertebrates, the former displaying elongated proximal phalanges and the latter showing an elongation of the penultimate phalanges. The fossil assemblage that includes Suminia demonstrates that arboreality and resource partitioning occurred shortly after the initial establishment of the modern type of terrestrial vertebrate ecosystems, with a large number of primary consumers and few top predators.  相似文献   

12.
Coral Reefs - Tubelip wrasses were probably the first modern fish group to feed on corals, an ability that has been linked to their unusual lips. However, the only detailed account of these lips is...  相似文献   

13.
The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected.  相似文献   

14.
The vast quantities of publicly available DNA sequencing data and genome resources are enabling biologists to investigate age-old problems in biology that were not addressable previously. In this review, we discuss how comparative genomics is practiced and how the data can be used to make biological inferences with respect to vertebrate evolution and development. Examples are taken from the well-known HOX clusters, which are always a high-priority target for genomic analyses due to their inferred role in the evolution of metazoans. In addition, we briefly discuss the application of genomic approaches to problems in comparative endocrinology.  相似文献   

15.
16.
A new genus and species of arctolepid arthrodire, Qataraspis deprofundis is based on an anterolateral plate recovered from a bore-hole in Qatar, Persian Gulf at a depth of nearly two and a half miles. It is compared with the corresponding plates of all known arctolepid arthrodires, particularly those referred to the undefined genus Kujdanoteiaspis Stensiö. The British species K. anglica is described in detail and referred to a new genus, Heightington-aspis, and a specimen from the Senni Beds of the Black Mountains is described as Ailuracantha dorsifelis gen. et sp. nov.  相似文献   

17.
We purified pancreatic deoxyribonuclease I (DNase I) from the shark Heterodontus japonicus using three-step column chromatography. Although its enzymatic properties resembled those of other vertebrate DNases I, shark DNase I was unique in being a basic protein. Full-length cDNAs encoding the DNases I of two shark species, H. japonicus and Triakis scyllia, were constructed from their total pancreatic RNAs using RACE. Nucleotide sequence analyses revealed two structural alterations unique to shark enzymes: substitution of two Cys residues at positions 101 and 104 (which are well conserved in all other vertebrate DNases I) and insertion of an additional Thr or Asn residue into an essential Ca(2+)-binding site. Site-directed mutagenesis of shark DNase I indicated that both of these alterations reduced the stability of the enzyme. When the signal sequence region of human DNase I (which has a high alpha-helical structure content) was replaced with its amphibian, fish and shark counterparts (which have low alpha-helical structure contents), the activity expressed by the chimeric mutant constructs in transfected mammalian cells was approximately half that of the wild-type enzyme. In contrast, substitution of the human signal sequence region into the amphibian, fish and shark enzymes produced higher activity compared with the wild-types. The vertebrate DNase I family may have acquired high stability and effective expression of the enzyme protein through structural alterations in both the mature protein and its signal sequence regions during molecular evolution.  相似文献   

18.
Myotragus balearicus was a dwarf artiodactyl endemic to the Eastern Balearic Islands, where it evolved in isolation for more than 5 million years before becoming extinct between 3640 and 2135 cal BC (calibrated years BC). Numerous unusual apomorphies obscure the relationship between Myotragus and the extant Caprinae. Therefore, genetic data for this species would significantly contribute to the clarification of its taxonomic position. In this study, we amplify, sequence, and clone a 338-base pair (bp) segment of the mitochondrial cytochrome b (cyt b) gene from a >9Kyr Myotragus subfossil from la Cova des Gorgs (Mallorca). Our results confirm the phylogenetic affinity of Myotragus with the sheep (Ovis) and the takin (Budorcas). In each tree, the Myotragus branch is long in comparison with the other taxa, which may be evidence of a local change in the rate of evolution in cyt b. This rate change may be due to in part to an early age of first reproduction and short generation time in Myotragus, factors that are potentially related to the extreme reduction in size of the adult Myotragus as compared to the other Caprinae.  相似文献   

19.
There is scant information available on the ecomorphology of Antarctic fishes, and especially on their feeding capabilities. We measured interspecific variation in mechanical advantage (MA), force-producing capability, and suction index for the jaws of the five dominant taxa of high-Antarctic fishes: the nototheniid Trematomus bernacchii; the zoarcids Pachycara brachycephalum, Lycodichthys dearborni, and Ophthalmolycus amberensis; and the liparid Paraliparis devriesi. Analysis of variance indicated significant differences in jaw metrics, and ordinations of morphological traits identified three loosely defined groups reflecting their family-level taxonomy. Principal component analyses showed distinct segregation between the nototheniid and the liparid, indicating that they are at the extremes of the feeding performance continuum. The zoarcids fell in the middle, suggesting that they utilize a combination of feeding modes to capture prey. The liparid had the lowest MA and bite force, but a large epaxialis implied a ram-suction-feeding mode. The large adductor mandibulae in the zoarcids P. brachycephalum and L. dearborni suggest that they are capable of grasping mobile prey and manipulating sedentary, hard-shelled macroinvertebrates. The zoarcids had a smaller epaxialis than the liparid and may not be as efficient as suction-feeders. Values for mechanical advantage ratios and suction indices in Antarctic fishes were within the range known for non-Antarctic fishes. The five Antarctic species do not possess dentition specialized for durophagous feeding; however, the high mechanical advantage ratio in the nototheniid and, to a lesser extent, in the zoarcids, suggests that durophagy may be possible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号