首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our goal was to identify the reaction catalyzed by NAT8 (N-acetyltransferase 8), a putative N-acetyltransferase homologous to the enzyme (NAT8L) that produces N-acetylaspartate in brain. The almost exclusive expression of NAT8 in kidney and liver and its predicted association with the endoplasmic reticulum suggested that it was cysteinyl-S-conjugate N-acetyltransferase, the microsomal enzyme that catalyzes the last step of mercapturic acid formation. In agreement, HEK293T extracts of cells overexpressing NAT8 catalyzed the N-acetylation of S-benzyl-l-cysteine and leukotriene E4, two cysteine conjugates, but were inactive on other physiological amines or amino acids. Confocal microscopy indicated that NAT8 was associated with the endoplasmic reticulum. Neither of the two frequent single nucleotide polymorphisms found in NAT8, E104K nor F143S, changed the enzymatic activity or the expression of the protein by ≥2-fold, whereas a mutation (R149K) replacing an extremely conserved arginine suppressed the activity. Sequencing of genomic DNA and EST clones corresponding to the NAT8B gene, which resulted from duplication of the NAT8 gene in the primate lineage, disclosed the systematic presence of a premature stop codon at codon 16. Furthermore, truncated NAT8B and NAT8 proteins starting from the following methionine (Met-25) showed no cysteinyl-S-conjugate N-acetyltransferase activity when transfected in HEK293T cells. Taken together, these findings indicate that NAT8 is involved in mercapturic acid formation and confirm that NAT8B is an inactive gene in humans. NAT8 homologues are found in all vertebrate genomes, where they are often encoded by multiple, tandemly repeated genes as many other genes encoding xenobiotic metabolism enzymes.  相似文献   

2.
The degradation of glutathione (GSH) in the yeast Saccharomyces cerevisiae appears to be mediated only by γ-glutamyltranspeptidase and cysteinylglycine dipeptidase. Other enzymes of the γ-glutamyl cycle, γ-glutamyl cyclotransferase and 5-oxo-l-prolinase, are not present in the yeast. In vivo transpeptidation was shown in the presence of a high intracellular level of γ-glutamyltranspeptidase, but only when the de-repressing nitrogen source was a suitable acceptor of the transferase reaction. In contrast, when the de-repressing source was not an acceptor of the transferase reaction (e.g. urea), only glutamate was detected. Intracellular GSH is virtually inert when the level of γ-glutamyltranspeptidase is low. Possible roles for in vivo transpeptidation are discussed.  相似文献   

3.
The contents of amino acids and peptides have been investigated in seeds of Fagus silvatica L. (beechnuts). In addition to the common amino acids, the following compounds have been isolated and identified: 4-hydroxyproline (probably the cis-l-isomer), N5-acetylornithine, 3-(2-furoyl)-l-alanine, methionine sulfoxide (probably an artefact), pipecolic acid (probably partially racemized d-isomer), l-willardiine (with a small amount of the d-isomer), N-(3-amino-3-carboxypropyl)azetidine-2-carboxylic acid, N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid, 2(S),5(S),6(S)-5-hydroxy-6-methylpipecolic acid, 2(S),5(R),6(S)-5-hydroxy-6-methylpipecolic acid, γ-glutamylalanine, γ-glutamylglutamic acid, γ-glutamylisoleucine, γ-glutamylleucine, γ-glutamylmethionine sulfoxide (probably an artefact), γ-glutamylphenylalanine, γ-glutamyltyrosine, γ-glutamylvaline, glutathione, γ-glutamylwillardiine, and γ-glutamylphenylalanylwillardiine. γ-Glutamylphenylalanine and willardiine are the dominating components of the amino acid fraction.The isolations were performed by use of ion exchange chromatography, taking advantage of the different pK-values of the amino acids, mainly on acid resins in the 3-chloropyridinium form with aq. 3-chloropyridine as eluant and on basic resins in the acetate form with aqueous acetic acid as eluant. These methods in combination with preparative paper chromatography have permitted the isolation and identification of compounds present in amounts as low as 1/6000 of the dominant ninhydrin-reactive component. The implications of the occurrence of this large variety of compounds in the Fagaceae are briefly discussed.  相似文献   

4.
Some metabolites of 1-bromobutane in the rabbit and the rat   总被引:2,自引:2,他引:0  
1. Rabbits and rats dosed with 1-bromobutane excrete in urine, in addition to butylmercapturic acid, (2-hydroxybutyl)mercapturic acid, (3-hydroxybutyl)mercapturic acid and 3-(butylthio)lactic acid. 2. Although both species excrete both the hydroxybutylmercapturic acids, only traces of the 2-isomer are excreted by the rabbit. The 3-isomer has been isolated from rabbit urine as the dicyclohexylammonium salt. 3. 3-(Butylthio)lactic acid is formed more readily in the rabbit; only traces are excreted by the rat. 4. Traces of the sulphoxide of butylmercapturic acid have been found in rat urine but not in rabbit urine. 5. In the rabbit about 14% and in the rat about 22% of the dose of 1-bromobutane is excreted in the form of the hydroxymercapturic acids. 6. Slices of rat liver incubated with S-butylcysteine or butylmercapturic acid form both (2-hydroxybutyl)mercapturic acid and (3-hydroxybutyl)mercapturic acid, but only the 3-hydroxy acid is formed by slices of rabbit liver. 7. S-Butylglutathione, S-butylcysteinylglycine and S-butylcysteine are excreted in bile by rats dosed with 1-bromobutane. 8. Rabbits and rats dosed with 1,2-epoxybutane excrete (2-hydroxybutyl)mercapturic acid to the extent of about 4% and 11% of the dose respectively. 9. The following have been synthesized: N-acetyl-S-(2-hydroxybutyl)-l-cysteine [(2-hydroxybutyl)mercapturic acid] and N-acetyl-S-(3-hydroxybutyl)-l-cysteine [(3-hydroxybutyl)mercapturic acid] isolated as dicyclohexylammonium salts, N-toluene-p-sulphonyl-S-(2-hydroxybutyl)-l-cysteine, S-butylglutathione and N-acetyl-S-butylcysteinyl-glycine ethyl ester.  相似文献   

5.
  • 1.1. γ-Glutamyltranspeptidase is present in echinoderm eggs and larvae: in homogenates the level of activity is comparable to that of rat cerebral cortex.
  • 2.2. In eggs of Lytechinus pictus, fertilization induces an early rapid and sustained (5 min–6 hr) 37% increase in the activity of γ-glutamyltranspeptidase in homogenate fractions.
  • 3.3. Relative to these homogenate levels, the specific activity of γ-glutamyltranspeptidase are ≈60% lower in 40,000 g supernatant fractions and 2.7-fold higher in 40,000 g particulate fractions in both unfertilized and 15 min post-fertilized Lytechinus pictus eggs.
  • 4.4. The subcellular distribution of γ-glutamyltranspeptidase is the same in both unfertilized and 15-min post-fertilized Lytechinus pictus eggs: 78% in 40,000 g particulate fractions, 22% in 40,000 g soluble fractions.
  • 5.5. In both unfertilized and 15 min post-fertilized eggs of Lytechinus pictus the enzyme responds to heat (50 vs 37°C) by activation in a similar manner: 1.72- and 1.68-fold homogenates; 2.6- and 3.0-fold in supernatants; 1.97- and 1.90-fold in particulate fractions.
  • 6.6. In homogenates of Pisaster ochraceous larvae, γ-glutamyltranspeptidase activity increases steadily during the course of larval development: relative to the low activity at day 5, activities exhibit an increase of 1.2-, 2.0-, 3.1- and 5.4-fold at days 10, 16, 22 and 28, respectively.
  相似文献   

6.
A benzfurazan derivative of glutathione l-γ-glutamyl-(S-4-nitrobenz-2-oxa-1,3-diazole)-l-cysteinylglycine (GS-NBD) with an absorption maximum at 419 nm is readily acted upon by γ-glutamyl transpeptidase to yield the S-benzfurazan derivative of cysteinylglycine. An internal SN shift occurs immediately to yield the N-benzfurazan derivative, which in turn reacts with the sulfhydryl reagent 4,4′-dithiodipyridine to produce the mixed disulfide with an intense absorption at 461 nm. The maximum difference in molar extinction coefficient is 13,200 and occurs at 470 nm. This general device should be applicable to the assay of many other peptidases.  相似文献   

7.
Glutathione is the most abundant low-molecular-weight thiol compound in aerobic bacterial cells. Although its biosynthetic pathway in Escherichia coli is known, its degradative pathway is not clear. We have studied its degradative pathway using E. coli K-12 as a model bacterium. Glutathione synthesized during the exponential phase of growth is excreted into the medium. During the stationary phase, extra cellular glutathione penetrates into the periplasm where its γ-glutamyl residue is cleaved off by γ-glutamyltranspeptidase localized in the periplasm. The released cysteinylglycine is taken up into the cytoplasm through peptide transport systems and the peptide linkage of cysteinylglycine is cooperatively cleaved by enzymes with cysteinylglycinase activity. The resultant cysteine and glycine are used as cysteine and glycine sources, respectively. This cycle acts as a salvage system for cysteine (glycine) in the cells. γ-Glutamyltranspeptidase, the key enzyme of this cycle, was studied extensively not only from a physiological point of view, but also with the aim of applying this enzyme as a catalyst for the synthesis of useful γ-glutamyl compounds.  相似文献   

8.
N-Acetyltransferase from Chryseobacterium sp. strain 5-3B is an acetyl coenzyme A (acetyl-CoA)-dependent enzyme that catalyzes the enantioselective transfer of an acetyl group from acetyl-CoA to the amino group of l-2-phenylglycine to produce (2S)-2-acetylamino-2-phenylacetic acid. We purified the enzyme from strain 5-3B and deduced the N-terminal amino acid sequence. The gene, designated natA, was cloned with two other hypothetical protein genes; the three genes probably form a 2.5-kb operon. The deduced amino acid sequence of NatA showed high levels of identity to sequences of putative N-acetyltransferases of Chryseobacterium spp. but not to other known arylamine and arylalkylamine N-acetyltransferases. Phylogenetic analysis indicated that NatA forms a distinct lineage from known N-acetyltransferases. We heterologously expressed recombinant NatA (rNatA) in Escherichia coli and purified it. rNatA showed high activity for l-2-phenylglycine and its chloro- and hydroxyl-derivatives. The Km and Vmax values for l-2-phenylglycine were 0.145 ± 0.026 mM and 43.6 ± 2.39 μmol · min−1 · mg protein−1, respectively. The enzyme showed low activity for 5-aminosalicylic acid and 5-hydroxytryptamine, which are reported as good substrates of a known arylamine N-acetyltransferase and an arylalkylamine N-acetyltransferase. rNatA had a comparatively broad acyl donor specificity, transferring acyl groups to l-2-phenylglycine and producing the corresponding 2-acetylamino-2-phenylacetic acids (relative activity with acetyl donors acetyl-CoA, propanoyl-CoA, butanoyl-CoA, pentanoyl-CoA, and hexanoyl-CoA, 100:108:122:10:<1).  相似文献   

9.
The subcellular distributions of the precursor form and mature form of γ-glutamyltranspeptidase of rat kidney were studied by labeling the enzyme with [3H] fucose in vivo. In trans Golgi elements and basolateral membranes, γ-glutamyltranspeptidase was present as a precursor form with a single polypeptide chain. However, the brush border membranes contained the heavy and light subunits as well as precursor. These results suggest that the precursor is converted to the mature form after its transport to the brush border membranes.  相似文献   

10.
Two diastereoisomers of 4-carboxy-4-hydroxy-2-aminoadipic acid have been isolated from leaves and inflorescences of Caylusea abyssinica. Green parts of the plant also contain appreciable amounts of the two diastereoisomers of 4-hydroxy-4-methylglutamic acid, 3-(3-carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine, (3-carboxy-4-hydroxyphenyl)glycine and in low concentration 2-aminoadipic acid, saccharopine [(2S, 2′S)-N6-(2-glutaryl)lysine] and some γ-glutamyl peptides. The acidic amino acids were separated from other amino acids on an Ecteola ion exchange column with M pyridine as eluant.  相似文献   

11.
In order to investigate the catalytic mechanism of Escherichia coli γ-glutamyltranspeptidase, ten para- and meta-substituted γ-glutamyl anilides were chemically prepared and employed as substrates to synthesize L-theanine to assay the activity of γ-glutamyltranspeptidase. The reaction was optimized for γ-glutamyl-p-nitroanilide. Key factors such as substrate specificity, pH, temperature, and the substrate mole ratio were all investigated. Kinetic studies of the acyl transfer reaction were described and the Hammett plot was constructed. This study indicated that the ratelimiting acylation reaction of γ-glutamyltranspeptidase can apparently be accelerated by either the electron-withdrawing or electron-donating substituents of γ-glutamyl anilides. The reaction could be catalyzed by the general acid and carboxy of Asp-433 or phenolic hydroxyl Tyr-444 may be the acid by autodock simulation for all prepared γ-glutamyl anilides.  相似文献   

12.
A carboxypeptidase was purified to homogeneity from upper, unwounded leaves of tomato plants in which carboxypeptidase activity had been induced to increase over three-fold by severely wounding the lower leaves. The carboxypeptidase was purified by ammonium sulfate precipitation, affinity chromatography, and finally by gel permeation chromatography. Electrophoresis at pH 4.3 and isoelectric focusing showed only a single band. The isoelectric point was 5.2 and the MW 105 000. Tomato carboxypeptidase possessed both peptidase and esterase activities and it sequentially hydrolysed amino acids from the carboxyl-terminal end of insulin chain B. It was optimally active at pH 6–7 on peptidase substrates, and at pH 8 on esterase substrates. The enzyme was inhibited by diisopropylfluorophosphate and incorporated 1 mol of DFP-[3H]. per mol of enzyme. Both peptidase and esterase activities were strongly inhibited by HgCl2 but not by p-hydroxymercuribenzoate or iodoacetamide. Carboxypeptidase inhibitor from potatoes did not inhibit the enzyme.  相似文献   

13.
The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.  相似文献   

14.
l-Cystathionine and l-selenocystathionine have been isolated from the foliage of Astragalus pectinatus. In addition to these two amino acids, some S-methylcysteine and trace amounts of Se-methyl-selenocysteine were also detected in the foliage extracts. The seeds of A pectinatus were found to contain significant amounts of all four of these amino acids plus the γ-glutamyl peptides of S-methylcysteine and Se-methylselenocysteine.  相似文献   

15.
2(S),3′(S)-N-(3-Amino-3-carboxypropyl)azetidine-2-carboxylic acid and 2(S),3′(S),3″(S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid have been isolated from seeds of Fagus silvatica L. (beechnuts). The structures have been established by PMR- and 13C-NMR-spectroscopy and by synthesis from l-azetidine-2-carboxylic acid. The second of the new amino acids is identical with nicotianamine. previously isolated from Nicotiana tabacum but assigned a different formula. The ring opening reactions of azetidine-2-carboxylic acid in neutral solution have been studied and the chemical and possibly biochemical precursor role of this amino acid for various amino acids including the two new ones described here, nicotianine [N-(3-amino-3-carboxypropyl)nicotinic acid] and methionine is discussed.  相似文献   

16.
The sheath of Sphaerotilus natans is composed of cysteine-rich peptide and polysaccharide moieties. The polysaccharide was prepared by treating the sheath with hydrazine, and was determined to be a mucopolysaccharide containing β-D-GlcA, β-D-Glc, α-D-GalN, and β-D-GalN. To elucidate the structure of the peptide, the sheath was labeled with a thiol-selective fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Enantiomeric determination of the S-derivatized Cys in the fluorescent sheath suggested that it contained L-Cys mainly. Fluorescent cysteinylglycine was detected in the partial acid hydrolysate of the fluorescent sheath. The sheath-degrading enzyme secreted by Paenibacillus koleovorans produced a fluorescent disaccharide-dipeptide composed of GalN, Gly, and N-acetylated Cys from the fluorescent sheath. The disaccharide and dipeptide moieties were found to be connected by an amide bond. Based on these results, the sheath was deduced to be formed by association of a mucopolysaccharide modified with N-acetyl-L-cysteinylglycine.  相似文献   

17.
1. A study of the distribution of glutathione S-alkenetransferases in the livers of vertebrate species suggests that different enzymes may catalyse reactions of GSH with (i) trans-benzylideneacetone, (ii) 2,3-dimethyl-4(2-methylenebutyryl)phenoxyacetic acid, (iii) cinnamonitrile, (iv) o-chlorobenzylidenemalononitrile, (v) methyl vinyl sulphone, and (vi) 3-(β-nitrovinyl)indole. 2. Glutathione S-alkenetransferase activity was generally greatest in rat liver, but the enzyme in hamster liver was more active towards o-chlorobenzylidenemalononitrile, and the enzyme in rabbit, hamster, guinea-pig and mouse livers was more active towards methyl vinyl sulphone. 3. Results from studies of the distribution of activities in rat liver and rat kidney, heat inactivation of rat liver supernatants, and (NH4)2SO4 fractionation and acid-precipitation experiments, differentiated further between some of the enzymes concerned with substrates (i)–(vi). 4. The infrequent detection of mercapturic acids in vivo is discussed.  相似文献   

18.
《Insect Biochemistry》1989,19(6):535-547
Electrophoretic separation of whole flies and of haemolymph indicates the presence of four peptidases, named dipeptidase A, B and C (Dip A, B and C) and leucine amino peptidase (LAP) after enzymes of similar substrate specificities and electrophoretic mobilities found in Drosophila (Laurie-Ahlberg, Biochem. Genet.20, 407–424, 1982; Walker et al., Insect Biochem.10, 535–541, 1980). Prominent in both tissues and haemolymph, dipeptidase A and B together hydrolyse a variety of dipeptides in vitro and probably most of the fly's small peptide component in vivo. Though Dip A and Dip B hydrolyse many of the same substrates, their activities differ in at least several respects. Dip A's Kms are higher than Dip B's Kms and hence in vivo the two enzymes together are likely to provide peptide hydrolysis through a wide range of substrate concentration. Dip A's unique hydrolyses are of peptides with biosynthesized amino acids in the N-terminal position and Dip B's unique hydrolyses are of peptides with essential amino acids in the N-terminal position. Dip B, but not Dip A, is inhibited by free amino acid. It is inhibited non-competitively and most strongly by essential amino acids. In cell-free haemolymph Dip B's activity is more stable than Dip A's. The accumulation and maintenance of small peptides in times of dietary sufficiency and the utilization of the small peptides as a source of amino acid in times of dietary scarcity (Collett, Insect Biochem.6, 179–185, 1976a; J. Insect Physiol.22, 1433–1440, 1976b) may be attributed to these features.  相似文献   

19.
A peptidase activity which can hydrolyze cysteinylglycine and S-benzyl-cysteine-p-nitroanilide was purified from rat renal brush border membranes. The purified peptidase exhibits an even greater specific activity when assayed with substrates for aminopeptidase M, leucine-p-nitroanilide and alanine-p-nitroanilide. All three activities copurify and coelectrophorese. In addition titration of the three activities in isolated brush border membrane vesicles with Fab antibodies prepared against the highly purified peptidase produced similar inactivation profiles. Therefore, the activity within brush border membrane towards S-benzyl-cysteine-p-nitroanilide is due to the action of aminopeptidase M (EC 3.4.11.2.)  相似文献   

20.
ACT domains (amino acid-binding domains) are linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Seventy proteins with ACT-GCN5-related N-acetyltransferase (GNAT) domain organization were found in actinomycetales. In this study, we investigate the ACT-containing GNAT acetyltransferase, Micau_1670 (MaKat), from Micromonospora aurantiaca ATCC 27029. Arginine and cysteine were identified as ligands by monitoring the conformational changes that occur upon amino acids binding to the ACT domain in the MaKat protein using FRET assay. It was found that MaKat is an amino acid-regulated protein acetyltransferase, whereas arginine and cysteine stimulated the activity of MaKat with regard to acetylation of acetyl-CoA synthetase (Micau_0428). Our research reveals the biochemical characterization of a protein acetyltransferase that contains a fusion of a GNAT domain with an ACT domain and provides a novel signaling pathway for regulating cellular protein acetylation. These findings indicate that acetylation of proteins and acetyltransferase activity may be tightly linked to cellular concentrations of some amino acids in actinomycetales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号