首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Single molecule techniques emerge as powerful and quantitative approaches for scientific investigations in last decades. Among them, single molecule fluorescence spectroscopy (SMFS) is able to non-invasively characterize and track samples at the molecular level. Here, applications of SMFS to fundamental biological questions have been briefly summarized in catalogues of single-molecule counting, distance measurements, force sensors, molecular tracking, and ultrafast dynamics. In these SMFS applications, statistics and physical laws are utilized to quantitatively analyze the behaviors of biomolecules in cellular signaling pathways and the mechanisms of biological functions. This not only deepens our understanding of bio-systems, but also provides a fresh angle to those fundamental questions, leading to a more quantitative thinking in life science.  相似文献   

3.
A large DNA analysis method which enable to obtain spatial information of positions of specific sequences along DNA molecule has been developed. Making use of the phenomenon that large DNA molecule is elongated stably under alternative current field in a concentrated linear polymer solution, direct observation of elongated individual lambda DNA molecules with fluorescence probes was carried out using fluorescence microscopy. Then, the spatial positions of the fluorescence spot of the probe on the DNA molecule were determined by image analysis.  相似文献   

4.
Single long DNA molecule (T4 DNA) in agarose gel was visualized with a fluorescence microscope. We confirmed alternating current electric fields is effective for stretching of single DNA molecule in agarose gel. This stretching phenomenon was observed with wide range of agarose gel concentration from 0.5%(W/V) to 1.5%. From this observation, the presence of agarose gel fiber is essential for this stretching phenomenon. The stretching process of several DNA molecules in gel shows discontinuity, which is never observed in polymer systems. It would be based on topological restriction from gel fibers.  相似文献   

5.
赵永芳 《生命科学》2011,(11):1140-1144
单分子荧光共振能量转移技术(single molecule fluorescence resonance energy transfer,smFRET)通过检测单个分子内的荧光供体及受体间荧光能量转移的效率,来研究分子构象的变化。在单分子探测技术发展之前,大多数的分子实验是探测分子的综合平均效应(ensemble averages),这一平均效应掩盖了许多特殊的信息。单分子探测可以对体系中的单个分子进行研究,得到某一分子特性的分布状况,也可研究生物分子的动力学反应。介绍了近来单分子荧光共振能量转移技术的进展。  相似文献   

6.
Spectroscopic and polarization properties of single light-harvesting complexes of higher plants (LHC-II) were studied at both room temperature and T < 5 K. Monomeric complexes emit roughly linearly polarized fluorescence light thus indicating the existence of only one emitting state. Most probably this observation is explained by efficient triplet quenching restricted to one chlorophyll a (Chl a) molecule or by rather irreversible energy transfer within the pool of Chl a molecules. LHC-II complexes in the trimeric (native) arrangement bleach in a number of steps, suggesting localization of excitations within the monomeric subunits. Interpretation of the fluorescence polarization properties of trimers requires the assumption of transition dipole moments tilted out of the symmetry plane of the complex. Low-temperature fluorescence emission of trimers is characterized by several narrow spectral lines. Even at lowest excitation intensities, we observed considerable spectral diffusion most probably due to low temperature protein dynamics. These results also indicate weak interaction between Chls belonging to different monomeric subunits within the trimer thus leading to a localization of excitations within the monomer. The experimental results demonstrate the feasibility of polarization sensitive studies on single LHC-II complexes and suggest an application for determination of the Chl transition-dipole moment orientations, a key issue in understanding the structure-function relationships.  相似文献   

7.
Fluorescein-labeled oligonucleotides as DNA-probes were synthesized and used to monitor hybrid formation, namely to detect DNA or oligonucleotide sequence in solution. The introduction of fluorescein to oligonucleotides was carried out by oxidation of a hydrogen phosphonate linkage with ethylenediamine or hexamethylenediamine as a tether and by a subsequent labeling of the primary amine moiety by FITC. Fluorescence anisotropy, r, was adopted as an index to monitor the behavior of F-probe in solution. An increase in the anisotropy was observed upon an increase in the chain-length of F-probe. When F-Probe formed a hybrid with its complementary oligonucleotide in solution, the r value increased compared to that of F-Probe itself. These observations clearly indicate that measurements of r in solution will readily lead to the monitoring of the presence of a hybrid in solution. Consequently, it is promising to detect a certain nucleic acid sequence in solution using fluorescent-labeled oligonucleotides.  相似文献   

8.
9.
Dynamic structural changes of macromolecules undergoing biochemical reactions can be studied using novel single molecule spectroscopy tools. Recent advances in applying such distance and orientation molecular rulers to biological systems are reviewed, and future prospects and challenges are discussed.  相似文献   

10.
11.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the Förster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm− 1. In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.  相似文献   

12.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the F?rster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm(-1). In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.  相似文献   

13.
The importance of forces in biology has been recognized for quite a while but only in the past decade have we acquired instrumentation and methodology to directly measure interactive forces at the level of single biological macromolecules and/or their complexes. This review focuses on force measurements performed with the atomic force microscope. A general introduction to the principle of action is followed by review of the types of interactions being studied, describing the main results and discussing the biological implications.  相似文献   

14.
We described a new and sensitive method for the determination of mercury ions (Hg2+) on the basis of fluorescence correlation spectroscopy (FCS) and recognition of oligonucleotides. In this assay, 30‐nm gold nanoparticles (GNPs) were modified with oligonucleotides containing thymine bases (T) as fluorescent probes, and the principle of this assay was based on the specific binding of Hg2+ by two DNA thymine bases. When two GNPs labelled with different oligonucleotides were mixed with a sample containing Hg2+, the T‐Hg2+‐T binding reaction should cause GNPs to form dimers (or oligomers), which would lead to a significant increase in the characteristic diffusion time of GNPs in the detection volume. The FCS method is a single molecule detection method and can sensitively detect the change in the characteristic diffusion time of GNPs before and after binding reactions. The quantitative analysis was performed according to the relation between the change in the characteristic diffusion time of GNPs and the concentration of Hg2+. Under optimal conditions, the linear range of this method was from 0.3 nM to 100 nM, and the detection limit was 0.14 nM for Hg2+. This new method was successfully applied for direct determination of Hg2+ levels in water and cosmetics samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
DNA sliding clamps attach to polymerases and slide along DNA to allow rapid, processive replication of DNA. These clamps contain many positively charged residues that could curtail the sliding due to attractive interactions with the negatively charged DNA. By single-molecule spectroscopy we have observed a fluorescently labeled sliding clamp (polymerase III beta subunit or beta clamp) loaded onto freely diffusing, single-stranded M13 circular DNA annealed with fluorescently labeled DNA oligomers of up to 90 bases. We find that the diffusion constant for the beta clamp diffusing along DNA is on the order of 10(-14) m(2)/s, at least 3 orders of magnitude less than that for diffusion through water alone. We also find evidence that the beta clamp remains at the 3' end in the presence of Escherichia coli single-stranded-binding protein. These results may imply that the clamp not only acts to hold the polymerase on the DNA but also prevents excessive drifting along the DNA.  相似文献   

16.

Background

Because H2O2 is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H2O2 is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H2O2 and glucose using fluorescence correlation spectroscopy (FCS).

Methodology/Principal Findings

FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H2O2 by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H2O2. Our developed system gave a linear calibration curve for H2O2 in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 µM with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM.

Conclusions/Significance

In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma.  相似文献   

17.
18.
19.
Suzuki Y  Tani T  Sutoh K  Kamimura S 《FEBS letters》2002,512(1-3):235-239
We have devised a novel method to visualize the fluorescence spectrum of a single fluorescent molecule using prism-based spectroscopy. Equipping a total internal reflection microscope with a newly designed wedge prism, we obtained a spectral image of a single rhodamine red molecule attached to an essential light chain of myosin. We also obtained a spectral image of single-pair fluorescence resonance energy transfer between rhodamine red and Cy5 in a double-labeled myosin motor domain. This method could become a useful tool to investigate the dynamic processes of biomolecules at the single-molecule level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号