共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract With appropriate pretreatment of the seeds fluence-response curves for the induction of germination of Arabidopsis thaliana show two phases. A proportion of the population responds to very low fluence (VLFR), 10 4–10 ?2μmolm ?2 establishing 10 ?4–10 ?2% of the total phytochrome in the far-red absorbing form (Pfr) and a proportion of the population respond to low fluence (LFR), 1–1000 μmolm ?2, establishing 1–75% Pfr. The VLFR is nol normally seen because the pre-existing Pfr level satisfies the Pfr requirement or use of green safelight establishes more Pfr than necessary to saturate the VLFR. Endogenous Pfr was depicted by a 24 h 35°C treatment, presumably as a result of dark destruction and/or dark reversion to the red absorbing form of phytochrome (Pr), making it possible to visualize the VLFR. A short pulse of 35°C treatment in combination with an appropriate temperature regime is also able to sensitize a proportion of the seed population. The proportion of the population showing the VLFR is determined by the duration of the cold imbibition pretreatment as well as the duration of the 35°C treatment. Complex fluence-response curves were observed in which a proportion of the seeds being promoted in the VLFR range, were inhibited at higher fluences before being further promoted in the LFR range. This was particularly clear for seed batches being sensitized by a short 35°C treatment. The VLFR may be of significance in the natural environment, enabling seeds buried in the upper layer of the soil to germinate, where the fluence rate falls off sharply and the LFR is not satisfied. A model is presented to explain the two phases in the fluence-response curves. 相似文献
6.
The thermogenesis curves of the germination of different rice and tree seeds were determined and studied by using a newly constructed microcalorimeter. The thermogenesis curves of the germination of the seeds demonstrate the existence of physiological triphasic patterns, which include imbibition, activation and growth stages in the germination process. The thermodynamics and thermokinetics of the main growth phase of the growth stage in the germination process have been studied. The growth heat effect (deltaH), the growth rate constant (k), the growth inhibitory factor (s) and deceleration rate constant (beta) have been determined and calculated, In addition, the experimental thermokinetic equations of the growth stage in the seed germination process have been established. 相似文献
8.
Theoretical calculation of the germination response induced by repeated treatments, separated by a dark period long enough to enable fixation of the effect of the preceding treatment, is possible when defining the percentage germination induced by the first treatment as the responding proportion (p) of the total treated seed population. Consequently the germination response induced by a second treatment should be relative to the proportion (q) of the seed population not responding to the first treatment (q = 1 - p). The fitting of these calculations with experimental data for the Very Low Fluence Response (VLFR) for germination of seeds of Kalanchoë blossfeldiana Poelln. cv. Vesuv, induced by repeated light pulses, suggests the independency of the effect of each treatment, i.e. the effect of the second treatment is neither positively nor negatively influenced by the first treatment. This hypothesis is not valid for calculation of the Low Fluence Response (LFR) for germination of Kalanchoë seeds induced by repeated light pulses, since the first light pulse does not result in a germination response. At least two irradiations are needed for an LFR while the third and following pulses increase the response much more than calculated with the proposed equation. It is suggested that the LFR in Kalanchoë , in contrast to the VLFR, includes the involvement of some pre-existing far-red absorbing form of phytochrome (P fr) and the involvement of dark reactions are to be considered. The effect of long irradiation times (up to 2xl0 5 s) resulting in a (defined in this paper) high fluence response (HFR) for germination of Kalanchoë seeds is also discussed in terms of independently responding seed population fractions. 相似文献
9.
This experiment was arranged to investigate the ability of hydrotime model ( θH) for estimating soybean seed germination (cv. ‘JK’) under different accelerated aging periods (AAP, 0, 24, 48, and 72 h) at each of the following water potentials ( ψ, 0, ??0.12, ??0.24, and ??0.36 MPa). Results indicated that both germination percentage (GP) and germination rate (GR) significantly influenced by ψ, AAP, and their interactions ( P?<?0.01). GP and GR decreased by 62.6 and 47.3% with longer AAP from 0 to 72 h and by 90.7 and 81.5% with lower ψ from zero to ??0.36 MPa as compared to the control, respectively. Therefore, the effect of ψ on GP and GR was more than AAP. The θH value was constant (~?6.71 MPa h ?1) till 50.6 h AAP and then linearly declined with the rate of 0.1545 MPa h ?1 per hour increase in AAP until 72 h (~?50% lower than its initial value). The ψb(50) value was ? 0.343 MPa in the control and then increased (became more positive) by ~?70% until 72 h AAP (? 0.104 MPa). In general, GP and GR of soybean declined with the increasing ψb(50) which can be due to cell membrane damage and reduce the activity of enzymes and organelles during AAP. Based on our findings, the θH model could describe well these relationships and their parameters can nicely be used for simulating soybean seed germination under this condition. 相似文献
10.
Non-dormant small cocklebur seeds ( Xanthium pennsylvanicum Wallr.)are potentiated to germinate, if they are subjected to anaerobiccondition for certain time periods after being sufficientlypre-soaked under aerobic conditions. This is termed "anaerobicinduction" of seed germination. Such induction was slightlyinhibited by CO 2 applied during anaerobiosis, but markedly promotedby C 2H 4 Thus, C 2H 4 can exert its action even in anaerobiosis,but does not enhance the fermentative CO 2 evolution. No actualanaerobic induction occurred when over 1? O 2 was present, evenif C 2H 4 had been applied. Therefore, anaerobic induction seemsto be due to a concerted action of some anaerobically proceedingevents and the anaerobically produced C 2H 4. (Received May 31, 1976; ) 相似文献
11.
The seeds of Paris polyphylla var. yunnanensis are deeply dormant, and they remain dormant for 18 months or longer in their natural environment. Periodic exposure of the seeds to a low-temperature of 4 °C broke the dormancy in about 16 weeks (112 days). The most effective temperature stratification scheme was an interval of 14 days at 4 °C and 14 days at 22 °C. Both GA 3 and ethephon significantly enhanced the germination rate during the stratification treatment. The seed coat, particularly the mesophyll outer layer of the seed coat, strongly inhibited the germination. With removal of the seed coat and exposure of the uncoated seeds to 600 mg/l GA 3 for 48 h before the temperature stratification of 14 days at 4 °C and 14 days at 22 °C for 112 days, a germination percentage as high as 95.3% of the seeds was attained in about 160 days. 相似文献
12.
We have used proteomics to better characterize germination and early seedling vigor in sugarbeet. Our strategy includes (1) construction of proteome reference maps for dry and germinating seeds of a high-vigor reference seed lot; (2) investigation of the specific tissue accumulation of proteins (root, cotyledon, perisperm); (3) investigation of changes in protein expression profiles detected in the reference seed lot subjected to different vigor-modifying treatments, e.g. aging and/or priming. More than 1 000 sugarbeet seed proteins have been identified by LC/MS-MS mass spectrometry (albumins, globulins and glutelins have been analyzed separately). Due to the conservation of protein sequences and the quality of MS sequencing (more than 10 000 peptide sequences have been obtained), the success rate of protein identification was on the average of 80%. This is to our knowledge the best detailed proteome analysis ever carried out in seeds. The data allowed us to build a detailed metabolic chart of the sugarbeet seed, generating new insights into the molecular mechanisms determining the development of a new seedling. Also, the proteome of a seed-storage tissue as the perisperm is described for the first time. 相似文献
13.
种子萌发是植物生命周期中一个重要的生理过程,激素作用、miRNA抑制、mRNA区域化、表观遗传调控等多个层次的分子抑制参与该过程的调控。赤霉素(解除抑制的激素)合成和失活的调控主要发生在转录水平,而脱落酸(引起抑制的激素)信号转导途径的调控则通过蛋白质抑制物的降解来实现。miRNA在转录后水平使其靶基因的mRNA降解,抑制种子的萌发;通过mRNA的区域化抑制与萌发相关基因的翻译属于另一层次的转录后抑制;小RNA介导的表观遗传机制也可能在种子萌发过程基因表达的协同调控中发挥重要作用。与分子水平的抑制类似,胚乳和种皮产生的机械抑制也很重要。 相似文献
14.
Seed germination of many plant species is influenced by light. Of the various photoreceptor systems, phytochrome plays an
especially important role in seed germination. The existence of at least five phytochrome genes has led to the proposal that
different members of the family have different roles in the photoregulation of seed germination. Physiological analysis of
seed germination of Arabidopsis thaliana (L.) Heynh. with phytochrome-deficient mutants showed for the first time that phytochrome A and phytochrome B modulate the
timing of seed germination in distinct actions. Phytochrome A photo-irreversibly triggers the photoinduction of seed germination
after irradiation with extremely low fluence light in a wide range of wavelengths, from UV-A, to visible, to far-red. In contrast,
phytochrome B mediates the well-characterized photoreversible reaction, responding to red and far-red light of fluences four
orders of magnitude higher than those to which PhyA responds. Wild plants, such as A. thaliana, survive under ground as dormant seeds for long periods, and the timing of seed germination is crucial for optimizing growth
and reproduction. It therefore seems reasonable for plants to possess at least two different physiological systems for sensing
the light environment over a wide spectral range with exquisite sensitivity of different phytochromes. This redundancy seems
to enhance plant survival in a fluctuating environment. 相似文献
18.
Germination potential in nondormant, upper cocklebur ( Xanthium pensylvanicum Wallr.) seeds, which were incapable of germinating under constant temperatures below 25 C in air, was increased by exposure to diurnally alternating temperatures. The cocklebur seeds failed to respond to the temperature fluctuations in the beginning of water imbibition, and their responsiveness appeared only after aerobic presoaking for a limited period or after anaerobic pretreatment for 1 to 3 days. Maximal germination was obtained after exposure to a thermoperiodic regime of 8 hours at 23 C and 16 hours at 8 C. A process occurring during the high temperature phase was aerobic and had to precede the inductive low temperature phase, its effect increasing with temperature. Critical minimum length of the inductive low temperature phase changed with the duration of a preceding anaerobiosis, for instance about 4 hours after 1 day anaerobiosis, but about 2 hours after 2 days. Percentage of subsequent germination was in proportion to the number of thermoperiodic cycles. A process of the inductive low temperature phase was not perturbed by inserting a brief higher temperature period into its phase; indeed, such insertion rather increased germination potential when performed in the earlier parts of the inductive low temperature phase. The effect of the low temperature survived for 13 to 17 hours during the higher temperature period. 相似文献
19.
A general model for determining time and rate of germination under continuously changing temperatures and other environmental parameters is proposed. The seed population may vary in size and density. The principle of the model is based upon the adherence of seed germination to an Arrhenius type system. The model, with slight modifications, may be applied to many temperature or other environmentally dependent biological systems. 相似文献
20.
Germination studies were carried out with seeds of Spergularia marina L. Griseb produced over an interval of six months (June-November). The response of the seeds to light and dark, various constant and alternating temperature regimes, and salinity were determined. In addition, the effects of soil moisture status at the time of seed production on the subsequent germination response of seeds were also determined. Light was an absolute requirement for germination. While a constant temperature regime did not generally favour germination of seed of any month, alternating temperature greatly enhanced germination with an optimum at 5/15°C in all seeds. When imbibed in solutions of different salinities, seeds collected in July and October behaved like true halophyte seeds whereas those collected in June. August, September and November behaved like glycophyte seeds. High concentration of gibberellic acid (3 000 μ M ) stimulated dark germination in the June and November seed lots, but in light, low GA3 concentration (300 μ M ) stimulated germination most. The addition of kinetin (30 μ M ) plus gibberellic acid enhanced germination in the dark in contrast to GA3 alone; kinetin alone stimulated a very low percentage germination. The moisture status of the soil at the time seeds were produced did not affect the germination response of an early seed crop (July) but affected that of the later seeds (August). Judging from the different germination responses, it appears that the seeds belong to at least two physiological groups, one which appears to need either a dark-wet or cold-wet pretreatmem for high germination to occur; and the other group which does not need pretreatmem. The ecological significance of these varied responses is discussed in relation to the survival of the species in its habitat. 相似文献
|