首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The effect of TGF-beta 1 treatment on the level of protein disulfide isomerase (PDI) mRNA in normal and chemically or spontaneously transformed rat liver epithelial cell lines was investigated. TGF-beta 1 at 1 or 10 ng/ml concentrations did not significantly decrease the mRNA level of PDI at 4 or 24 hours after exposure to TGF-beta 1, irrespective whether the cell line was sensitive or resistant to the growth-inhibitory effect of TGF-beta 1 at these concentrations. The results indicate that in normal or neoplastic rat liver epithelial cells, the expression of PDI is unrelated to the growth inhibitory effect of TGF-beta 1.  相似文献   

4.
5.
6.
Di K  Wong YC  Wang X 《Experimental cell research》2007,313(19):3983-3999
Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-beta1 (transforming growth factor beta1). Here we demonstrate a novel role of Id-1 in promoting TGF-beta1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-beta1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-beta1-induced cell motility was mediated through activation of MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-beta1-treated cells through down-regulation of E-cadherin, redistribution of beta-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-beta1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-beta1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.  相似文献   

7.
When deprived of steroid in the long term, T-47-D human breast cancer cells lose estrogen sensitivity of cell growth. This loss of response results from an increased basal growth rate in the absence of steroid, not from a loss of estrogen-stimulated growth, and it occurs without any loss of estrogen receptor number or function. Growth factor gene expression and sensitivity have been investigated in this model system in an attempt to unravel the molecular mechanisms underlying the progression to steroid autonomy. The transition was accompanied by a decreased dependence on added serum and by a loss of the stimulatory effects of insulin and basic fibroblast growth factor, but also by an acquired sensitivity to stimulation by transforming growth factor-beta (TGF-beta). An increase in TGF-beta 1 mRNA was detected following loss of steroid sensitivity. There was no increase in epidermal growth factor (EGF) receptor number. These findings are discussed in relation to current knowledge concerning the mechanisms by which estrogens stimulate breast cancer cell proliferation.  相似文献   

8.
A new type high molecular weight receptor (type V receptor) of transforming growth factor beta (TGF-beta) was recently purified from bovine liver plasma membranes and appears not to be related to receptors previously described for TGF-beta (Pauline O'Grady, Ming-Der Kuo, Joseph J. Baldassare, Shuan Shian Huang and Jung San Huang [1991] J. Biol. Chem. 266:8583-8589). This type V receptor may be important in the regulation of cell growth by TGF-beta. We examined its distribution in a wide range of normal and transformed cells. The type V receptor was found to be expressed in many normal cells including cells of epithelial, endothelial, fibroblastic and chondrocytic origins. However, a number of human epithelial tumor cells (5 out of 6 examined) did not express detectable levels of the type V TGF-beta receptor. These results suggest that loss of the type V receptor may potentially contribute to the transformed state of certain epithelial tumor cells.  相似文献   

9.
The growth modulatory effects of a rat liver-derived growth inhibitor (LDGI), transforming growth factor beta 1 (TGF-beta 1), and recombinant tumor necrosis factor (rTNF-alpha) were examined in a variety of liver-derived and nonliver-derived normal and neoplastic cell culture systems. Normal rat liver epithelial (RLE) cells were highly sensitive to the growth inhibitory effects of LDGI (ID50 = 0.2 ng/ml) and TGF-beta 1 (ID50 = 0.25 ng/ml) but were less sensitive to rTNF-alpha (ID40 = 5000 Units/ml). Aflatoxin B1-transformed RLE cells showed sensitivity to the cytostatic effects of LDGI (ID50 = 1.5 ng/ml); however, these cells were completely resistant to the antiproliferative effects of TGF-beta 1 and rTNF-alpha. Clones isolated from these transformed cells, exhibited a wide range of sensitivities to LDGI but all of the clones were resistant to the growth inhibitory effects of both TGF-beta 1 and rTNF-alpha. Rat hepatoma Reuber cells were extremely sensitive to the antiproliferative effects of rTNF-alpha (ID50 = 10 Units/ml) but exhibited sensitivity to LDGI only at concentrations above 1.5 ng/ml and were resistant to the antiproliferative effects of TGF-beta 1. Rat hepatoma UVM 7777 cells and human hepatoma HepG2 cells, however, were insensitive to the growth inhibitory effects of all three factors. Among the nonliver-derived cells, human breast carcinoma (MCF-7) cells were extremely sensitive to rTNF-alpha (ID50 = 20 Units/ml, exhibited some sensitivity to LDGI (ID50 = 1 ng/ml), and were resistant to the antiproliferative effects of TGF-beta 1. In contrast, the rate of DNA synthesis is rat kidney fibroblasts and human foreskin fibroblasts was significantly stimulated in response to TGF-beta 1, LDGI, and rTNF-alpha. These data demonstrate that LDGI, TGF-beta 1, and rTNF-alpha exert positive and negative modulations of growth in different cell systems and that the growth regulatory effects of LDGI differ from those of TGF-beta 1 and rTNF-alpha in some cell types.  相似文献   

10.
The effects of the transforming growth factor-beta 1 (TGF-beta 1) and epidermal growth factor (EGF) on the growth of cells from 2 endometrial cancer lines, Ishikawa and HEC-50 were evaluated by measuring rates of DNA synthesis and changes in cell numbers during culture. EGF at 17 and 1.7 nM concentrations consistently enhanced HEC-50 cell proliferation. TGF-beta 1 inhibited Ishikawa cell proliferation but, unexpectedly for epithelium-derived cells, stimulated HEC-50 cell growth. This effect is of interest as it indicates that endometrial cells can acquire an altered responsiveness to a growth inhibitor during the process of malignant transformation. Northern blot analyses showed expression of TGF-alpha, TGF-beta 1 and EGF receptors mRNA in both cell lines. Neither estradiol (E2) nor 4-hydroxytamoxifen (OHTam) affected mRNA levels for either TGF-alpha or TGF-beta in HEC-50 cells, a line unresponsive to E2 for proliferation. In Ishikawa cells, previously shown to respond to both E2 and OHTam by increasing proliferation rates, E2 increased TGF-alpha mRNA and reduced TGF-beta mRNA levels. OHTam lowered the levels of both mRNA species, although the effect was greater on TGF-beta than TGF-alpha mRNA. These data are consistent with, but do not prove, the existence of a possible autocrine regulation by TGF-alpha and TGF-beta of human cancer cell proliferation, which might be under E2 influence in Ishikawa cells.  相似文献   

11.
BACKGROUND INFORMATION: Loss of sensitivity to TGF-beta1 (transforming growth factor beta1)-induced growth arrest is an important step towards malignant transformation in human epithelial cells, and Id-1 (inhibitor of differentiation or DNA binding-1) has been associated with cell proliferation and cell-cycle progression. Here, we investigated the role of Id-1 in cellular sensitivity to TGF-beta1. RESULTS: Using an immortalized prostate epithelial cell line, NPTX cells, we suppressed Id-1 expression through antisense strategy. We found that inhibition of Id-1 expression suppressed cell proliferation and at the same time induced cellular senescence and G2/M cell-cycle arrest. In addition, inactivation of Id-1 made cells more vulnerable to TGF-beta1-induced growth arrest. The sensitization effect on TGF-beta1 was associated with up-regulation of two downstream effectors of the TGF-beta1 pathway, p21WAF1/Cip1 and p27KIP1. CONCLUSION: Our results indicate that endogenous Id-1 levels might be a crucial factor in the development of resistance to TGF-beta1-induced growth suppression in human prostate epithelial cells.  相似文献   

12.
To clarify the effect of hepatocyte growth factor (HGF) on proliferation of hepatic oval cells, we transferred HGF gene into liver of the Solt-Farber rat model. Male Fisher 344 rats were infected with a recombinant adenovirus carrying the cDNA for HGF (pAxCAHGF) from tail vein. HGF mRNA showed its peak at 4 days, and diminished thereafter. The total and proliferating cell nuclear antigen-positive hepatic oval cells were significantly elevated in HGF-transferred rats, in which stem cell factor and c-kit mRNA increased at each time point. Our results suggest that in vivo transfer of the HGF gene into liver accelerates proliferation of hepatic oval cells in the Solt-Farber model in rats.  相似文献   

13.
NF-kappaB/Rel factors have been implicated in the regulation of liver cell death during development, after partial hepatectomy, and in hepatocytes in culture. Rat liver epithelial cells (RLEs) display many biochemical and ultrastructural characteristics of oval cells, which are multipotent cells that can differentiate into mature hepatocytes. While untransformed RLEs undergo growth arrest and apoptosis in response to transforming growth factor beta1 (TGF-beta1) treatment, oncogenic Ras- or Raf-transformed RLEs are insensitive to TGF-beta1-mediated growth arrest. Here we have tested the hypothesis that Ras- or Raf-transformed RLEs have altered NF-kappaB regulation, leading to this resistance to TGF-beta1. We show that classical NF-kappaB is aberrantly activated in Ras- or Raf-transformed RLEs, due to increased phosphorylation and degradation of IkappaB-alpha protein. Inhibition of NF-kappaB activity with a dominant negative form of IkappaB-alpha restored TGF-beta1-mediated cell killing of transformed RLEs. IKK activity mediates this hyperphosphorylation of IkappaB-alpha protein. As judged by kinase assays and transfection of dominant negative IKK-1 and IKK-2 expression vectors, NF-kappaB activation by Ras appeared to be mediated by both IKK-1 and IKK-2, while Raf-induced NF-kappaB activation was mediated by IKK-2. NF-kappaB activation in the Ras-transformed cells was mediated by both the Raf and phosphatidylinositol 3-kinase pathways, while in the Raf-transformed cells, NF-kappaB induction was mediated by the mitogen-activated protein kinase cascade. Last, inhibition of either IKK-1 or IKK-2 reduced focus-forming activity in Ras-transformed RLEs. Overall, these studies elucidate a mechanism that contributes to the process of transformation of liver cells by oncogene Ras and Raf through the IkappaB kinase complex leading to constitutive activation of NF-kappaB.  相似文献   

14.
15.
16.
17.
Previous investigations have indicated that the suppression of proliferation by transforming growth factor (TGF) beta 1 is often lost upon cellular transformation, and that proliferation of some tumors is stimulated by TGF-beta. The present study provides the first observation of a link between TGF-beta 1 regulation of this process and alterations in the expression of ribonucleotide reductase, a highly controlled rate-limiting step in DNA synthesis. A series of radiation and T24-H-ras-transformed mouse 10T1/2 cell lines exhibiting increasing malignant potential was evaluated for TGF-beta 1 induced alterations in ribonucleotide reductase M1 and M2 gene expression. Early increases in M1 and/or M2 message and protein levels were observed only in malignant cell lines. The TGF-beta 1 induced changes in M1 and/or M2 gene expression occurred prior to any detectable changes in the rates of DNA synthesis, supporting the novel concept that ribonucleotide reductase gene expression can be elevated by TGF-beta 1 without altering the proportion of cells in S phase. T24-H-ras-transformed 10T1/2 cells were transfected with a plasmid containing the coding region of TGF-beta 1 under the control of a zinc-sensitive metallothionein promoter. When these cells were cultured in the presence of zinc, a large induction of TGF-beta 1 message was observed within 1 h. Both M1 and M2 genes were also induced, with increased mRNA levels appearing 2 h after zinc treatment, or 1 h after TGF-beta 1 message levels were clearly elevated. In total, the data suggests a mechanism of autocrine stimulation of malignant cells by TGF-beta 1, in which early alterations in the regulation of ribonucleotide reductase may play an important role.  相似文献   

18.
Transforming growth factor beta1(TGF-beta1) is a stimulator of malignant progression in mouse skin carcinogenesis. TGF-beta1 exerts a differential effect on cultured nontumorigenic (MCA3D cell line) and transformed (PDV cell line) keratinocytes. Whereas MCA3D cells are growth arrested and committed to die in the presence of the factor, it induces a reversible epithelial-fibroblastic conversion in PDV cells. This conversion is associated in vivo with a squamous-spindle cell carcinoma transition. Here we have investigated the role of urokinase (uPA) during malignant progression of transformed epidermal keratinocytes. We show that the levels of uPA expression/secretion, and the uPA binding activity to the cell surface, correlate with the invasive and malignant potentials of mouse epidermal cell lines. TGF-beta1 enhanced uPA production, the number of uPA cell surface binding sites, and the expression of the plasminogen activator inhibitor PAI-1, in transformed PDV cells, but had no major effect on nontumorigenic MCA3D keratinocytes. Increased uPA production depended on the presence of the factor in the culture medium and occurred concomitantly to the stimulation of the migratory and invasive abilities of PDV cells. Synthetic peptides containing the amino terminal sequence of the mature mouse uPA inhibited the binding of uPA to the cell surface and decreased TGF-beta1-induced cell motility and invasiveness. These results demonstrate that the uPA system mediates at least part of the migratory and invasive phenotype induced by TGF-beta1 in transformed keratinocytes, and suggest a role for uPA on the changes that lead to the appearance of spindle carcinomas.  相似文献   

19.
Hepatocyte growth factor (HGF) induced scattering and cell migration of human gastric adenocarcinoma MKN-74. HGF also significantly promoted the growth of MKN-74 cells in a dose-dependent manner, although HGF is reported to be antiproliferative for the growth of tumor cell lines. This result indicates that HGF stimulates cell proliferation of not only normal epithelial cells but also certain carcinoma cells. Furthermore, transforming growth factor-beta (TGF-beta), which is recognized to inhibit the growth of most epithelial cells, additively enhanced both the cell proliferation and migration induced by HGF. These additive effects of HGF and TGF-beta may be responsible for the tumor invasiveness and uncontrolled growth of certain types of carcinoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号