首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full length cDNA clone of the alpha subunit of mitochondrial ATP synthase (EC 3.6.1.34) has been isolated from a cDNA library prepared from LX-1 human tumor cells in the lambda-Zap vector. The clone is 1883 base pairs (bp) in length and contains a 1659 bp open reading frame encoding a polypeptide of 553 residues. The deduced amino acid sequence is highly homologous to ATP synthase from several other species.  相似文献   

2.
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.  相似文献   

3.
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.  相似文献   

4.
Chemical synthesis of highly hydrophobic peptides and proteins remains a challenging problem. Strong interchain associations within the peptide–resin matrix have to be overcome. A synthetic strategy for solid phase peptide synthesis is proposed, mainly based on prolonged coupling time using aprotic polar solvent mixtures. A tailored chromatographic purification was required to obtain a sample sufficiently pure for structural analysis. In this work, the total chemical synthesis of the membrane‐embedded yeast mitochondrial ATP synthase subunit 8 is described. The quality of the synthetic protein was checked by electrospray mass spectrometry, its tendency to adopt α‐helical secondary structure is evidenced by circular dichroism spectroscopy. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis.  相似文献   

6.
Batten Disease is a lysosomal storage disease in which the major component that accumulates is subunit 9 of mitochondrial ATP synthase. Whether or not fibroblasts in culture exhibit this phenotype is controversial. We show that fibroblasts from a human Batten Disease patient and from a mouse model of this disease exhibit autofluorescent inclusion bodies. We also demonstrate that levels of ATP synthase subunit 9 are elevated in these diseased fibroblasts when compared to control cells. However, the exact growth state of the human fibroblasts was critical, and this factor probably accounts for discrepencies in the literature.  相似文献   

7.
8.
9.
M Boutry  N H Chua 《The EMBO journal》1985,4(9):2159-2165
The beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia is encoded by two nuclear genes, atp2-1 and atp2-2, which are both expressed. The complete nucleotide sequence of atp2-1 has been determined. It contains eight introns ranging from 88 to 1453 bp. The last intron contains a putative insertion element (Inp), of 812 bp bordered by 35-bp inverted repeats which share an 11-bp homology with Agrobacterium tumefaciens T-DNA borders. Sequences homologous to Inp are present in multiple copies in the N. plumbaginifolia and the N. tabacum genome but not in more distant species. The atp2-1 encoded polypeptide is highly homologous to beta subunits from other ATP synthases but it contains an extension at the N terminus which is probably involved in mitochondrial targeting. A sequence homology between exon 4 of atp2-1 and exon 1 of the human ras genes suggests a common ancestral origin for these exons.  相似文献   

10.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N'-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F(1)-F(o) interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

11.
12.
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.  相似文献   

13.
14.
Mitochondrial dysfunction plays a critical role in the development of ischaemic cardiomyopathy (ICM). In this study, the mitochondrial proteome in the cardiac tissue of ICM patients was analysed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry (MS) for the first time to provide new insights into cardiac dysfunction in this cardiomyopathy. We isolated mitochondria from LV samples of explanted hearts of ICM patients (n = 8) and control donors (n = 8) and used a proteomic approach to investigate the variations in mitochondrial protein expression. We found that most of the altered proteins were involved in cardiac energy metabolism (82%). We focused on ATPA, which is involved in energy production, and dihydrolipoyl dehydrogenase, implicated in substrate utilization, and observed that these molecules were overexpressed and that the changes detected in the processes mediated by these proteins were closely related. Notably, we found that ATPA overexpression was associated with reduction in LV mass (r = −0.74, P < 0.01). We also found a substantial increase in the expression of elongation factor Tu, a molecule implicated in protein synthesis, and PRDX3, involved in the stress response. All of these changes were validated using classical techniques and by using novel and precise selected reaction monitoring analysis and an RNA sequencing approach, with the total heart samples being increased to 24. This study provides key insights that enhance our understanding of the cellular mechanisms related to the pathophysiology of ICM and could lead to the development of aetiology-specific heart failure therapies. ATPA could serve as a molecular target suitable for new therapeutic interventions.  相似文献   

15.
16.
The role of subunit a in proton translocation by the Escherichia coli F(1)F(o) ATP synthase is poorly understood. In the membrane-bound F(o) sector of the enzyme, H(+) binding and release occurs at Asp(61) in the middle of the second transmembrane helix (TMH) of subunit c. Protons are thought to reach Asp(61) via an aqueous access pathway formed at least in part by one or more of the five TMHs of subunit a. In this report, we have substituted Cys into a 19-residue span of the fourth TMH of subunit a and used chemical modification to obtain information about the aqueous accessibility of residues along this helix. Residues 206, 210, and 214 are N-ethylmaleimide-accessible from the cytoplasmic side of the membrane and may lie on the H(+) transport route. Residues 215 and 218 on TMH4, as well as residue 245 on TMH5, are Ag(+)-accessible but N-ethylmaleimide-inaccessible and may form part of an aqueous pocket extending from Asp(61) of subunit c to the periplasmic surface.  相似文献   

17.
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP.  相似文献   

18.
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.  相似文献   

19.
RNA editing, a process that results in the production of RNA molecules having a nucleotide sequence different from that of the initial DNA template, has been demonstrated in several organisms using different biochemical pathways. Very recently RNA editing was described in plant mitochondria following the discovery that the sequence of certain wheat and Oenothera cDNAs is different from the nucleotide sequence of the corresponding genes. The main conversion observed was C to U, leading to amino acid changes in the deduced protein sequence when these modifications occurred in an open reading frame. In this communication we show the first attempt to isolate and sequence a protein encoded by a plant mitochondrial gene. Subunit 9 of the wheat mitochondrial ATP synthase complex was purified to apparent homogeneity and the sequence of the first 32 amino acid residues was determined. We have observed that at position 7 leucine was obtained by protein sequencing, instead of the serine predicted from the previously determined genomic sequence. Also we found phenylalanine at position 28 instead of a leucine residue. Both amino acid conversions, UCA (serine) to UUA (leucine) and CUC (leucine) to UUC (phenylalanine), imply a C to U change. Thus our results seem to confirm, at the protein level, the RNA editing process in plant mitochondria.  相似文献   

20.
Structural organization of mitochondrial ATP synthase   总被引:1,自引:0,他引:1  
Specific modules and subcomplexes like F(1) and F(0)-parts, F(1)-c subcomplexes, peripheral and central stalks, and the rotor part comprising a ring of c-subunits with attached subunits gamma, delta, and epsilon can be identified in yeast and mammalian ATP synthase. Four subunits, alpha(3)beta(3), OSCP, and h, seem to form a structural entity at the extramembranous rotor/stator interface (gamma/alpha(3)beta(3)) to hold and stabilize the rotor in the holo-enzyme. The intramembranous rotor/stator interface (c-ring/a-subunit) must be dynamic to guarantee unhindered rotation. Unexpectedly, a c(10)a-assembly could be isolated with almost quantitive yield suggesting that an intermediate step in the rotating mechanism was frozen under the conditions used. Isolation of dimeric a-subunit and (c(10))(2)a(2)-complex from dimeric ATP synthase suggested that the a-subunit stabilizes the same monomer-monomer interface that had been shown to involve also subunits e, g, b, i, and h. The natural inhibitor protein Inh1 does not favor oligomerization of yeast ATP synthase. Other candidates for the oligomerization of dimeric ATP synthase building blocks are discussed, e.g. the transporters for inorganic phosphate and ADP/ATP that had been identified as constituents of ATP synthasomes. Independent approaches are presented that support previous reports on the existence of ATP synthasomes in the mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号