首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Owing to its independence from the main Central European drainage systems, the Italian freshwater fauna is characterized by a high degree of endemicity. Three main ichthyogeographic districts have been proposed in Italy. Yet, the validity of these regions has not been confirmed by phylogenetic and population genetic analyses and a phylogeographic scenario for Italy's primary freshwater fish fauna is still lacking. Here, we investigate the phylogeography of the Italian vairone (Telestes muticellus).  相似文献   

2.

Background  

Various mechanisms such as geographic barriers and glacial episodes have been proposed as determinants of intra-specific and inter-specific differentiation of populations, and the distribution of their genetic diversity. More recently, habitat and climate differences, and corresponding adaptations have been shown to be forces influencing the phylogeographic evolution of some vertebrates. In this study, we examined the contribution of these various factors on the genetic differentiation of the bent-winged bat, Miniopterus schreibersii, in southeastern Europe and Anatolia.  相似文献   

3.

Background  

Pleistocene events have shaped the phylogeography of many taxa worldwide. Their genetic signatures in tropical species have been much less explored than in those living in temperate regions. We analysed the genetic structure of a Malagasy primate species, a mouse lemur with a wide distribution (M. murinus), in order to investigate such phylogeographic processes on a large tropical island. We also evaluated the effects of anthropogenic pressures (fragmentation/deforestation) and natural features (geographic distance, rivers) on genetic structure in order to complement our understanding of past and present processes of genetic differentiation.  相似文献   

4.
Enormous mountainous forests in Sino‐Himalayans and Siberia harbor important avian biodiversity in the Northern Hemisphere. Numerous studies in last two decades have been contributed to systematics and taxonomy of passerines birds in these regions and have revealed various and complex phylogeographic patterns. A passerine species Red‐flanked Bluetail Tarsiger cyanurus provided a good system to manifest such evolutionary complexity. The subspecies T. c. cyanurus and T. c. rufilatus (or/and T. c. pallidior), divergent in morphology, acoustics, and migratory strategies are allopatric in Siberia and Sino‐Himalayan forests, respectively. The two taxa most likely deserve full species status but rigorous genetic analysis is missing. In this study, multilocus phylogeography based on mitochondrial DNA and Z‐linked DNA reveals that T. c. cyanurus and T. c. rufilatus are reciprocally monophyletic with significant statistical support and differ with a large number of diagnostic nucleotide sites resulting substantial genetic divergence. Our finding supports the proposed split of Tarsiger cyanurus s.l. that T. cyanurus and T. rufilatus should be treated as two full species. Whether “pallidior” is a subspecies or geographical form of T. rufilatus is still uncertain. Additionally, these two forest passerine species may have diverged 1.88 (3.25–1.30) Mya, which might be shaped by geographical vicariance due to grassland and desert steppe on the central Loess Plateau during the Pliocene. Taken together, this study and further suggests another independent example of North Palearctic–Sino‐Himalayan phylogeographic pattern in Palearctic birds.  相似文献   

5.

Aim

Many studies have investigated the phylogeographic history of species on the Baja California Peninsula, and they often show one or more genetic breaks that are spatially concordant among many taxa. These phylogeographic breaks are commonly attributed to vicariance as a result of geological or climatic changes, followed by secondary contact when barriers are no longer present. We use restriction‐site associated DNA sequence data and a phylogeographic model selection approach to explicitly test the secondary contact hypothesis in the red diamond rattlesnake, Crotalus ruber.

Location

Baja California and Southern California.

Methods

We used phylogenetic and population clustering approaches to identify population structure. We then used coalescent methods to simultaneously estimate population parameters and test the fit of phylogeographic models to the data. We used ecological niche models to infer suitable habitat for C. ruber at the Last Glacial Maximum (LGM).

Results

Crotalus ruber is composed of distinct northern and southern populations with a boundary near the town of Loreto in Baja California Sur. A model of isolation followed by secondary contact provides the best fit to the data, with both divergence and contact occurring in the Pleistocene. We also identify a genomic signature of northern range expansion in the northern population, consistent with LGM niche models showing that the northern‐most portion of the range of C. ruber was not suitable habitat during the LGM.

Main conclusions

We provide the first explicitly model‐based test of the secondary contact model in Baja California and show that populations of C. ruber were isolated before coming back into contact near Loreto, a region that shows phylogeographic breaks for other taxa. Given the timing of divergence and contact, we suggest that climatic fluctuations have driven the observed phylogeographic structure observed in C. ruber and that they may have driven similar patterns in other taxa.  相似文献   

6.

Background  

Oceanography and life-history characteristics are known to influence the genetic structure of marine species, however the relative role that these factors play in shaping phylogeographic patterns remains unresolved. The population genetic structure of the endemic, rocky shore dwelling Caffrogobius caffer was investigated across a known major oceanographic barrier, Cape Agulhas, which has previously been shown to strongly influence genetic structuring of South African rocky shore and intertidal marine organisms. Given the variable and dynamic oceanographical features of the region, we further sought to test how the pattern of gene flow between C. caffer populations is affected by the dominant Agulhas and Benguela current systems of the southern oceans.  相似文献   

7.

Background  

The study of speciation in the marine realm is challenging because of the apparent absence of physical barriers to dispersal, which are one of the main drivers of genetic diversity. Although phylogeographic studies using mitochondrial DNA (mtDNA) information often reveal significant genetic heterogeneity within marine species, the evolutionary significance of such diversity is difficult to interpret with these markers. In the northwestern (NW) Pacific, several studies have emphasised the potential importance of sea-level regression during the most recent glaciations as a driver of genetic diversity in marine species. These studies have failed, however, to determine whether the period of isolation was long enough for divergence to attain speciation. Among these marine species, the cosmopolitan estuarine-dependent fish Mugil cephalus represents an interesting case study. Several divergent allopatric mtDNA lineages have been described in this species worldwide, and three occur in sympatry in the NW Pacific.  相似文献   

8.

Background  

Squeaker catfishes (Pisces, Mochokidae, Synodontis) are widely distributed throughout Africa and inhabit a biogeographic range similar to that of the exceptionally diverse cichlid fishes, including the three East African Great Lakes and their surrounding rivers. Since squeaker catfishes also prefer the same types of habitats as many of the cichlid species, we hypothesized that the East African Synodontis species provide an excellent model group for comparative evolutionary and phylogeographic analyses.  相似文献   

9.

Background  

Species that are widespread throughout historically glaciated and currently non-glaciated areas provide excellent opportunities to investigate the role of Pleistocene climatic change on the distribution of North American biodiversity. Many studies indicate that northern animal populations exhibit low levels of genetic diversity over geographically widespread areas whereas southern populations exhibit relatively high levels. Recently, paleoclimatic data have been combined with niche-based distribution modeling to locate possible refugia during the Last Glacial Maximum. Using phylogeographic, population, and paleoclimatic data, we show that the distribution and mitochondrial data for the millipede genus Narceus are consistent with classical examples of Pleistocene refugia and subsequent post-glacial population expansion seen in other organismal groups.  相似文献   

10.

Background  

While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation.  相似文献   

11.

Background  

Mitochondrial DNA has been detected in the nuclear genome of eukaryotes as pseudogenes, or Numts. Human and plant genomes harbor a large number of Numts, some of which have high similarity to mitochondrial fragments and thus may have been inadvertently included in population genetic and phylogenetic studies using mitochondrial DNA. Birds have smaller genomes relative to mammals, and the genome-wide frequency and distribution of Numts is still unknown. The release of a preliminary version of the chicken (Gallus gallus) genome by the Genome Sequencing Center at Washington University, St. Louis provided an opportunity to search this first avian genome for the frequency and characteristics of Numts relative to those in human and plants.  相似文献   

12.

Background  

The forests of the upper Amazon basin harbour some of the world's highest anuran species richness, but to date we have only the sparsest understanding of the distribution of genetic diversity within and among species in this region. To quantify region-wide genealogical patterns and to test for the presence of deep intraspecific divergences that have been documented in some other neotropical anurans, we developed a molecular phylogeny of the wide-spread terrestrial leaflitter frog Eleutherodactylus ockendeni (Leptodactylidae) from 13 localities throughout its range in Ecuador using data from two mitochondrial genes (16S and cyt b; 1246 base pairs). We examined the relation between divergence of mtDNA and the nuclear genome, as sampled by five species-specific microsatellite loci, to evaluate indirectly whether lineages are reproductively isolated where they co-occur. Our extensive phylogeographic survey thus assesses the spatial distribution of E. ockendeni genetic diversity across eastern Ecuador.  相似文献   

13.

Background  

The dusky dolphin (Lagenorhynchus obscurus) is distributed along temperate, coastal regions of New Zealand, South Africa, Argentina, and Peru where it feeds on schooling anchovy, sardines, and other small fishes and squid tightly associated with temperate ocean sea surface temperatures. Previous studies have suggested that the dusky dolphin dispersed in the Southern Hemisphere eastward from Peru via a linear, temperate dispersal corridor provided by the circumpolar west-wind drift. With new mitochondrial and nuclear DNA sequence data, we propose an alternative phylogeographic history for the dusky dolphin that was structured by paleoceanographic conditions that repeatedly altered the distribution of its temperate prey species during the Plio-Pleistocene.  相似文献   

14.

Aim

To test the influence of historical and contemporary environment in shaping the genetic diversity of freshwater fauna we contrast genetic structure in two co‐distributed, but ecologically distinct, rainbowfish; a habitat generalist (Melanotaenia splendida) and a habitat specialist (M. trifasciata).

Location

Fishes were sampled from far northern Australia (Queensland and Northern Territory).

Methods

We used sequence data from one mitochondrial gene and one nuclear gene to investigate patterns of genetic diversity in M. splendida and M. trifasciata to determine how differences in habitat preference and historical changes in drainage boundaries affected patterns of connectivity.

Results

Melanotaenia splendida showed high levels of genetic diversity and little population structure across its range. In contrast, M. trifasciata showed high levels of population structure. Whereas phylogeographic patterns differed, both species showed a strong relationship between geographical distance and genetic differentiation between populations. Melanotaenia splendida showed a shallower relationship with geographical distance, and genetic differentiation was best explained by stream length and a lower scaled ocean distance (11.98 times coast length). For M. trifasciata, genetic differentiation was best explained by overwater distance between catchments and ocean distance scaled at 1.16 × 106 times coast length.

Main conclusions

Connectivity of freshwater populations inhabiting regions periodically interconnected during glacial periods appears to have been affected by ecological differences between species. Species‐specific differences are epitomized here by the contrast between co‐distributed congeners with different habitat requirements: for the habitat generalist, M. splendida, there was evidence for greater historical genetic connectivity with oceans as a weaker barrier to gene exchange in contrast with the habitat specialist, M. trifasciata.  相似文献   

15.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658‐bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC‐based hypothesis testing to complement phylogeographic studies on non‐model species.  相似文献   

16.

Background  

Although allopatric speciation is viewed as the most common way in which species originate, allopatric divergence among a group of closely related species has rarely been examined at the population level through phylogeographic analysis. Here we report such a case study on eight putative cypress (Cupressus) species, which each have a mainly allopatric distribution in the Qinghai-Tibetan Plateau (QTP) and adjacent regions. The analysis involved sequencing three plastid DNA fragments (trnD-trnT, trnS-trnG and trnL-trnF) in 371 individuals sampled from populations at 66 localities.  相似文献   

17.

Background  

Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals) covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites). We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios.  相似文献   

18.

Background  

The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA) sequences from 42 human lineages, representing major clades with known geographic assignation.  相似文献   

19.

Background  

The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species.  相似文献   

20.

Background  

Tectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes. Elucidate the evolutionary history of freshwater fishes permits to infer theories on the biotic and geological evolution of a region, which can further be applied to understand processes of population divergence, speciation and for conservation purposes. The freshwater ecosystems in Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense geologic activity and climatic changes since the early Miocene. The endangered goodeid Zoogoneticus quitzeoensis is widely distributed across Central México, thus making it a good model for phylogeographic analyses in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号