首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HMG-CoA synthase, for regulation by mevalonate supplements. These studies indicate that in proliferating fibroblasts, treatment with mevalonic acid can produce a suppression of HMG-CoA reductase activity similar to magnitude to that caused by oxygenated sterols. In contrast, HMG-CoA synthase and acetoacetyl-CoA thiolase are only weakly regulated by mevalonate when compared with 25-hydroxycholesterol. Furthermore, neither HMG-CoA synthase nor acetoacetyl-CoA thiolase exhibits the multivalent control response by sterol and mevalonate supplements in the absence of endogenous mevalonate synthesis which is characteristic of nonsterol regulation of HMG-CoA reductase. These observations suggest that nonsterol regulation of HMG-CoA reductase is specific to that enzyme in contrast to the pleiotropic regulation of enzymes of sterol biosynthesis observed with oxygenated sterols. In Chinese hamster ovary cells supplemented with mevalonate at concentrations that are inhibitory to reductase activity, at least 80% of the inhibition appears to be mediated by nonsterol products of mevalonate. In addition, feed-back regulation of HMG-CoA reductase by endogenously synthesized nonsterol isoprenoids in the absence of exogenous sterol or mevalonate supplements also produces a 70% inhibition of the enzyme activity.  相似文献   

2.
Our previous studies (Watson, J. A., Havel, C. M., Lobos, D. V., Baker, F. C., and Morrow, C. J. (1985) J. Biol. Chem. 260, 14083-14091) suggested that a matabolite, distal to isopentenyl 1-pyrophospate (IPP), served as a regulatory signal for sterol-independent modulation of Kc cell 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. This report summarizes efforts to localize the potential source of the post-IPP regulatory signal molecule. We found no direct correlation between mevalonate-mediated suppression of Kc cell HMG-CoA reductase activity and the rates of [1-14C]-, [3-14C]-, [5-14C]-, or [5-3H]mevalonate incorporation into either carbon dioxide, neutral lipids, water, or water-soluble isopentenoid pyrophosphate esters. [1-14C]Mevalonate's rate of conversion to 14CO2 (a measure of total isopentenyl 1-pyrophosphate synthesis) was minimally 5-fold greater than that for neutral isopentenoid lipid synthesis (measured with either [5-3H]-, [3-14C]-, or [5-14C]mevalonate). However, [5-3H]mevalonate's rate of conversion into [3H]H2O (measure of shunted mevalonate carbon) was equivalent or greater than that measured for neutral isopentenoid lipid synthesis. [5-14C]Mevalonate radioactivity was incorporated into macromolecules and n-fatty acids. Kc cell extracts (100,000 X g supernatant fluid) readily oxidized alcohols with the following activity sequence: geraniol = nerol greater than farnesol = dimethylallyl alcohol greater than geranylgeraniol, isopentenyl alcohol, and allyl alcohol. Oxidation required NAD, and ethanol was not a substrate. We conclude that (a) Kc cells shunted a significant fraction (greater than or equal to 40%) of their post-IPP carbon to prenols for oxidative catabolism and (b) that shunted mevalonate carbon may play a significant role in the mevalonate-mediated regulation of Kc cell HMG-CoA reductase activity.  相似文献   

3.
The role of mevalonate and its products in the regulation of cellular proliferation was examined using 6-fluoromevalonate (Fmev), a compound that blocks the conversion of mevalonate pyrophosphate to isopentenyl pyrophosphate. Fmev suppressed DNA synthesis by a variety of transformed and malignant T cell, B cell, and myeloid cell lines. In contrast to results previously reported with mitogen-stimulated human peripheral blood T cell DNA synthesis, low concentrations of low density lipoprotein (LDL) alone could not restore proliferation to these cell lines. The same concentrations of LDL were able to provide sufficient cholesterol and support the growth of all cell lines when mevalonate synthesis was blocked with a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, lovastatin. Fmev-mediated inhibition was totally prevented in some but not all cell lines when the concentration of exogenous LDL was increased 5-10-fold above that required to permit proliferation of lovastatin-blocked cells. Residual HMG-CoA reductase activity of cells cultured with LDL inversely correlated with the restoration of growth to Fmev-blocked cultures. Confirmation of the critical role of HMG-CoA reductase activity and mevalonate synthesis in the inhibition of cellular proliferation by Fmev was obtained by demonstrating that the specific inhibitor of this enzyme, lovastatin, restored proliferation of Fmev-blocked cells. Furthermore, supplementation of cultures with mevalonate, the product of HMG-CoA reductase activity, markedly inhibited proliferation of Fmev-blocked cells. These findings indicate that mevalonate or one of the mevalonate phosphates, which accumulates in Fmev-blocked cells, is a critical negative regulator of cellular proliferation.  相似文献   

4.
Embryonic Drosophila cells (Kc cells) and [5-3H]mevalonate (less than or equal to 10 microM) were used to determine the absolute basal in vivo rate of total mevalonic acid synthesis/utilization. An absolute in vivo mevalonic acid synthesis rate of 0.69 nmol/h/mg total cell protein was measured. Absolute mevalonate utilization was obtained by correcting for the extent of endogenous dilution of exogenous [3H]mevalonate at isotopic equilibrium. Cellular [3H]farnesol specific radioactivity was used as representative of a rapidly turning over isopentenoid pool. Although our previous Kc cell study (Havel, C. M., Rector, E. R. II, Watson, J. A., 1986, J. Biol. Chem. 261, 10,150-10,156) demonstrated that greater than or equal to 40% of the metabolized [3H]mevalonate appeared as 3H-labeled media water, this report established that t,t-3,7,11-[3H]trimethyl-2,6,10-dodecatriene-1,12 dioic acid was also secreted. Media accumulation of the C15-alpha,omega-prenyl dioic acid and 3H2O was related directly to [3H]mevalonic acid availability. This is the first mevalonate carbon balance study reported for a eukaryotic organism. It was concluded that (i) Kc cells synthesized more mevalonate than needed for normal growth and essential isopentenoids and (ii) excess mevalonate carbon accumulated intra- and extracellularly as isopentenoid compounds distal to C5 products. Finally, this study emphasized the need to measure total mevalonate utilization and not mevalonate conversion to a single isopentenoid end product in carbon balance investigations.  相似文献   

5.
Treatment of rat intestinal epithelial cells in culture (IEC-6) with progesterone (10 micrograms/ml) caused a strong inhibition of cholesterol biosynthesis as indicated by a decreased incorporation of radiolabel from [3H]acetate. This inhibition was accompanied by an accumulation of radioactivity in an intermediate which coeluted with authentic desmosterol upon high performance liquid chromatography (HPLC). In addition, treatment of cells with progesterone caused lesser accumulation of radiolabel in products with retention times (RT) of 7.9 and 13.5 min on reverse-phase HPLC. The RT-13.5 compound was tentatively identified as cholesta-5,7,24-trien-3 beta-ol based on its relative retention and on its conversion to cholesterol upon incubation with untreated cells. The RT-7.9 compound was identified as 24 (S),25-epoxycholesterol (S-EC) based on its coelution with authentic S-EC and by its conversion to 25-hydroxycholesterol upon reduction with LiAlH4. Incubation of IEC-6 cells with chemically prepared S-EC resulted in dose-dependent suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity within 6 h (I50 = 0.3 microM). Pretreatment of cells with progesterone prevented this suppressive effect. No suppression of reductase activity was observed in progesterone-treated cells in spite of obvious accumulation of S-EC in amounts sufficient to effect regulation; instead, a 2-3-fold increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity occurred within a 24-h period. Following the removal of progesterone from the culture medium, reductase activity declined rapidly over the next 6 h. However, IEC-6 cells could not metabolize S-EC, derived either endogenously or exogenously, during a similar time frame; nor did progesterone affect the uptake of exogenous S-EC by IEC-6 cells. These results show that although progesterone treatment of cultured cells promotes the synthesis of a natural oxysterol suppressor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, the continued presence of progesterone prevents the regulatory action of S-EC. The unique nature of this interference is high-lighted by the observation that progesterone could not prevent the suppression of reductase activity by either 25-hydroxycholesterol or mevalonolactone.  相似文献   

6.
Halobacterium halobium was evaluated as a potentially simpler biological model to study the regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity (content) in response to mevalonate availability. H. halobium's HMG-CoA reductase was soluble and required NADPH as its reduced coenzyme. Maximum HMG-CoA reductase activity (4-10 nmol/min/mg of soluble protein) was obtained in buffers which contained 3.5 M KCl. Mevinolin (a) blocked growth of H. halobium, (b) was a competitive inhibitor of HMG-CoA reductase (Ki = 20 nM), (c) did not cause the paradoxical increase in assayable reductase activity, as reported for eukaryotic cells, and (d) caused a rapid (within 30 min) 8-12-fold accumulation of intracellular HMG-CoA. Mevalonate blocked and reversed mevinolin-mediated HMG-CoA accumulation. Although mevinolin-treated cell's growth was restored by mevalonate, HMG-CoA reductase's activity was not. Thus, H. halobium is a unique biological model which allows one to study the regulation of intracellular HMG-CoA concentration and not HMG-CoA reductase activity (content) in response to mevalonate availability.  相似文献   

7.
8.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

9.
We have studied the regulated degradation of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase within the endoplasmic reticulum in cells permeabilized with digitonin. Using Chinese hamster ovary cells transfected with a plasmid encoding HMGal, a chimeric protein containing the membrane domain of HMG-CoA reductase coupled to beta-galactosidase, we have demonstrated mevalonate and sterol-stimulated loss of beta-galactosidase activity. In pulse-chase experiments we have demonstrated mevalonate-stimulated degradation of both HMGal and HMG-CoA reductase. The rate of mevalonate-stimulated degradation observed in permeabilized cells tends to be slightly slower than that observed in intact cells treated with mevalonate and is dependent upon incubation of cells with mevalonate prior to permeabilization. The degradation process measured in this report extends a previous report of HMG-CoA reductase degradation in digitonin-permeabilized cells (Leonard, D. A., and Chen, H. W. (1987) J. Biol. Chem. 262, 7914-7919) by mimicking key physiological features of the in vivo process, including: stimulation by regulatory molecules, specifically mevalonate and sterols; inhibition by cycloheximide; and inhibition by an inhibitor of neutral cysteine proteases.  相似文献   

10.
Cell line C-4-1 which produces alkaline phosphatase (EC 3.1.1.4) of the placental type in response to glucocorticoids was grown in the presence of inhibitors of mevalonate formation for periods ranging from 1 to 4 days. When C-4-1 cells were incubated in the presence of 25-hydroxycholesterol (1 microM) or compactin (11.6 microM) the induction of alkaline phosphatase by 0.2 microM dexamethasone was suppressed. This suppression could be partially prevented by the addition of mevalonolactone to the growing culture. The reversal effect by mevalonate was most evident with compactin, a well known competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. In contrast, the effect of tunicamycin which inhibits N-linked protein glycosylation and also prevents alkaline phosphatase induction by glucocorticoids could not be reversed by mevalonate. These results implicate mevalonate in alkaline phosphatase induction, possibly through its role as a precursor of dolichols.  相似文献   

11.
Incubations of Hep G2 cells for 18 h with human low-density lipoprotein (LDL) resulted in a decrease of squalene synthetase activity, whereas heavy high-density lipoprotein (hHDL) stimulated the activity. Simultaneous addition of LDL abolished the hHDL-induced stimulation, indicating that manipulating the regulatory sterol pool within the cells influenced the enzyme activity. Blocking the endogenous cholesterol synthesis either at the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase site with compactin or at the 2,3-oxidosqualene cyclase site with the inhibitor U18666A gave rise to an elevation of the squalene synthetase activity. Simultaneous addition of mevalonate abolished the compactin-induced increase. However, at total blockade of sterol synthesis by 30 microM U18666A, added compactin and/or mevalonate did not change the enzyme activity further. It was concluded that sterols regulate the squalene synthetase activity, whereas, in contrast with the regulation of the HMG-CoA reductase activity in Hep G2 cells, mevalonate-derived non-sterols did not influence this enzyme.  相似文献   

12.
Embryonic Drosophila cells (Kc cells) were used to further characterize sterol-independent modulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. 3-Methyl-3-5-dihydroxyvalerate (mevalonate), 3-fluoromethyl-3,5-dihydroxyvalerate (fluoromevalonate), and 3-ethyl-3,5-dihydroxyvalerate (homomevalonate) were tested as modulators. Although mevalonate caused a rapid, reversible suppression of reductase activity, fluoro- and homomevalonate increased activity; fluoromevalonate was more effective than homomevalonate. Mevalonate, added simultaneously with fluoromevalonate, blocked the analogue's effect on Kc cell reductase activity. However, mevalonate did not suppress an established fluoromevalonate increase in HMG-CoA reductase activity. Fluoromevalonate blocked [1-14C, 5-3H]mevalonate conversion to 14CO2- and 3H-labeled lipids and [3H] mevalonate 5-pyrophosphate accumulated. Neither protein nor RNA synthesis were required for mevalonate-mediated suppression of reductase activity. However, fluoromevalonate's effect on reductase activity required protein synthesis. Furthermore, in the absence of protein synthesis, fluoromevalonate-stabilized Kc cell HMG-CoA reductase activity. We have concluded that mevalonate, fluoromevalonate, homomevalonate, and compactin (mevinolin) modulated HMG-CoA reductase activity because they altered isoprenoid carbon flow to a post-isopentenyl 1-pyrophosphate regulatory, signal molecule.  相似文献   

13.
HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase; E.C.1.1.1.34) supplies mevalonate for the synthesis of many plant primary and secondary metabolites, including the terpenoid component of indole alkaloids. Suspension cultures of Camptotheca acuminata and Catharanthus roseus, two species valued for their anticancer indole alkaloids, were treated with the elicitation signal transducer methyl jasmonate (MeJA). RNA gel blot analysis from MeJA treated cultures showed a transient suppression of HMGR mRNA, followed by an induction in HMGR message. Leaf disks from transgenic tobacco plants containing a chimeric hmgl::GUS construct were also treated with MeJA and showed a dose dependent suppression of wound-inducible GUS activity. The suppression of the wound response by MeJA was limited to the first 4 h post-wounding, after which time MeJA application had no effect. The results are discussed in relation to the differential regulation of HMGR isogenes in higher plants.Abbreviations GUS -glucuronidase - hmg gene of hmgr - HMGR 3-hydroxy-3-methylglutaryl-coenzyme A reductase - JA jasmonic acid - MeJA methyl jasmonate - MUG methylumbelliferyl--d-glucuronide - TDC tryptophan decarboxylase - SDS sodium dodecyl sulfate - SS strictosidine synthase  相似文献   

14.
Cell line C-4-a which produces alkaline phosphatase (EC 3.1.1.4) of the placental type in response to glucocorticoids was grown in the presence of inhibitors of mevalonate formation for periods ranging from 1 to 4 days. When C-4-1 cells were incubated in the presence of 25-hydroxycholesterol (1 μM) or compactin (11.6 μM) the induction of alkaline phosphatase by 0.2 μM dexamethasone was supressed. This suppression could be partially prevented by the addition of mevalonolactone to the growing culture. The reversal effect by mevalonate was most evident with compactin, a well known competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. In contrast, the effect of tunicamycin which inhibits N-linked protein glycosylation and also prevents alkaline phosphatase induction by glucocorticoids could not be reversed by mevalonate. These results implicate mevalonate in alkaline phosphatase induction, possibly through its role as a precursor of dolichols.  相似文献   

15.
Hep G2 cells were incubated under conditions known to influence the HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity, e.g. in the presence of compactin (a competitive inhibitor of HMG-CoA reductase itself) and U18666A (a squalene-2,3-epoxide cyclase inhibitor). We studied the effects of these conditions both on the HMG-CoA reductase activity and on the reductase mRNA content. In the presence of compactin the mRNA content increased, but less than the enzyme activity, as determined after removal of the inhibitor. The increase in mRNA could be prevented by addition of mevalonate or by a combination of low-density lipoprotein (LDL) plus a low concentration of mevalonate. LDL alone prevented the compactin-induced increases in mRNA and activity only partially. The effect of U18666A on reductase mRNA content and activity was biphasic, i.e. a slight decrease at low (0.3-0.5 microM) concentrations, with a concomitant formation of polar sterols [Boogaard, Griffioen & Cohen (1987) Biochem. J. 241, 345-351], and an increase at high (20-30 microM) concentrations, with complete blockage of sterol formation. At these high concentrations of U18666A, additional compactin (2 microM) increased the reductase activity, but not the mRNA content. We conclude that non-sterol metabolites of mevalonate regulate exclusively at the enzyme level, whereas sterol metabolites regulate at the reductase mRNA level. In the latter group of regulators we distinguish mevalonate metabolites which can, and metabolites which cannot, be replaced by exogenous LDL.  相似文献   

16.
A somatic cell mutant (Mev-1) auxotrophic for mevalonate by virtue of a complete lack of detectable 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase activity has been shown to demonstrate a requirement for a non-sterol mevalonate-derived product for regulation of synthesis of HMG-CoA reductase. A comparison of the effects of 25-hydroxycholesterol and the combination of 25-hydroxycholesterol and mevalonate on HMG-CoA reductase activity, synthesis, and mRNA levels in Mev-1 is presented in this report. The results show a close correlation between activity, rate of synthesis, and mRNA levels for Mev-1 cells treated with 25-hydroxycholesterol alone. Under the conditions of these experiments these effects are relatively small (approximately a 4-fold decrease). A much larger inhibition of HMG-CoA reductase activity and rate of synthesis (approximately 50-fold) is observed upon treatment of Mev-1 cells with a combination of 25-hydroxycholesterol and mevalonate. Yet, under these conditions mRNA levels are still reduced by only a factor of 4. These results are interpreted to suggest that the non-sterol mevalonate-derived regulatory product of HMG-CoA reductase acts by a translational control mechanism.  相似文献   

17.
Incubating Hep G2 cells for 18 h with triparanol, buthiobate and low concentrations (less than 0.5 microM) of U18666A, inhibitors of desmosterol delta 24-reductase, of lanosterol 14 alpha-demethylase and of squalene-2,3-epoxide cyclase (EC 5.4.99.7) respectively, resulted in a decrease of the HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase activity. However, U18666A at concentrations higher than 3 microM increased the HMG-CoA reductase activity in a concentration-dependent manner. None of these inhibitors influenced directly the reductase activity in Hep G2 cell homogenates. Analysis by t.l.c. of 14C-labelled non-saponifiable lipids formed from either [14C]acetate or [14C]mevalonate during the cell incubations confirmed the sites of action of the drugs used. Beside the 14C-labelled substrates of the blocked enzymes and 14C-labelled cholesterol, another non-saponifiable lipid fraction was observed, which behaves as polar sterols on t.l.c. This was the case with triparanol and at those concentrations of U18666A that decreased the reductase activity, suggesting that polar sterols may play a role in suppressing the reductase activity. In the presence of 30 microM-U18666A (sterol formation blocked) the increase produced by simultaneously added compactin could be prevented by addition of mevalonate. This indicates the existence of a non-sterol mevalonate-derived effector in addition to a sterol-dependent regulation. LDL (low-density lipoprotein), which was shown to be able to decrease the compactin-induced increase in reductase activity, could not prevent the U18666A-induced increase. On the contrary, LDL enhanced the U18666A effect, showing that the LDL regulation is not merely the result of introducing cholesterol to the cells.  相似文献   

18.
Two enzymes of polyisoprenoid synthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) and mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36), are present in the microsomal and soluble fractions of Neurospora crassa, respectively. HMG CoA reductase specifically uses NADPH as reductant and has a K(m) for dl-HMG CoA of 30 micro M. The activities of HMG CoA reductase and mevalonate kinase are low in conidia and increase threefold during the first 12 hr of stationary growth. Maximum specific activities of both enzymes occur when aerial hyphae and conidia first appear (2 days), but total activities peak later (3-4 days). Addition to the growth media of ergosterol or beta-carotene, alone or in combination, does not affect the specific or total activity of either enzyme. The mevalonate kinase of N. crassa, purified 200-fold to a specific activity of 5 micro moles/min/mg, is free from HMG CoA reductase, phosphomevalonate kinase, ATPase, adenylate kinase, and NADH oxidase activities. Mevalonate kinase specifically requires ATP as cosubstrate and exhibits a marked preference for Mg(2+) over Mn(2+), especially at high ratios of divalent metal ion to ATP. Kinase activity is inhibited by p-hydroxymercuribenzoate, and this inhibition is partially prevented by mevalonate or MgATP. Optimum activity occurs at pH 8.0-8.5 and at about 55 degrees C. The Neurospora kinase, like that of hog liver, has a sequential mechanism for substrate addition. The Michaelis constants obtained were 2.8 mM for dl-mevalonate and 1.8 mM for MgATP(-2). Geranyl pyrophosphate is an inhibitor competitive with MgATP (K(i) = 0.11 mM).  相似文献   

19.
3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).  相似文献   

20.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase. Importantly, increased amounts of polyubiquitinated HMGR and HMGal were observed upon treating cells with sterols or MVA. Cycloheximide inhibited the sterol-stimulated degradation of HMGR concomitantly with a marked reduction in polyubiquitination of the enzyme. Inhibition of squalene synthase with zaragozic acid blocked the MVA- but not sterol-stimulated ubiquitination and degradation of HMGR. Thus, similar to yeast, the ubiquitin-proteasome pathway is involved in the metabolically regulated turnover of mammalian HMGR. Yet, the data indicate divergence between yeast and mammals and suggest distinct roles for sterol and nonsterol metabolic signals in the regulated ubiquitination and degradation of mammalian HMGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号