首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response. Many muscular vessels present vasomotion, i.e., rhythmic diameter oscillations caused by synchronous cytosolic calcium oscillations of the smooth muscle cells. Vasomotion has been shown to be modulated by pressure changes. To get a better understanding of the effect of stress and in particular pressure on vasomotion, we propose a model of a blood vessel describing the calcium dynamics in a coupled population of smooth muscle cells and endothelial cells and the consequent vessel diameter variations. We show that a rise in pressure increases the calcium concentration. This may either induce or abolish vasomotion, or increase its frequency depending on the initial conditions. In our model the myogenic response is less pronounced for large arteries than for small arteries and occurs at higher values of pressure if the wall thickness is increased. Our results are in agreement with experimental observations concerning a broad range of vessels.  相似文献   

2.
Control of cerebral vasculature differs from that of systemic vessels outside the blood-brain barrier. The hypothesis that the endothelium modulates vasomotion via direct myoendothelial coupling was investigated in a small vessel of the cerebral circulation. In the primary branch of the rat basilar artery, membrane potential, diameter, and calcium dynamics associated with vasomotion were examined using selective inhibitors of endothelial function in intact and endothelium-denuded arteries. Vessel anatomy, protein, and mRNA expression were studied using conventional electron microscopy high-resolution ultrastructural and confocal immunohistochemistry and quantitative PCR. Membrane potential oscillations were present in both endothelial cells and smooth muscle cells (SMCs), and these preceded rhythmical contractions during which adjacent SMC intracellular calcium concentration ([Ca(2+)](i)) waves were synchronized. Endothelium removal abolished vasomotion and desynchronized adjacent smooth muscle cell [Ca(2+)](i) waves. N(G)-nitro-l-arginine methyl ester (10 microM) did not mimic this effect, and dibutyryl cGMP (300 muM) failed to resynchronize [Ca(2+)](i) waves in endothelium-denuded arteries. Combined charybdotoxin and apamin abolished vasomotion and depolarized and constricted vessels, even in absence of endothelium. Separately, (37,43)Gap27 and (40)Gap27 abolished vasomotion. Extensive myoendothelial gap junctions (3 per endothelial cell) composed of connexins 37 and 40 connected the endothelial cell and SMC layers. Synchronized vasomotion in rat basilar artery is endothelium dependent, with [Ca(2+)](i) waves generated within SMCs being coordinated by electrical coupling via myoendothelial gap junctions.  相似文献   

3.
The present study investigated the influence of media thickness on myogenic tone and intracellular calcium concentration ([Ca(2+)](i)) in rat skeletal muscle small arteries. A ligature was loosely tied around one external iliac artery of 5-wk-old spontaneously hypertensive rats. At 18 wk of age, femoral artery blood pressure was 102 +/- 11 mmHg (n = 15) on the ligated side and 164 +/- 6 mmHg (n = 15) on the contralateral side. Small arteries feeding the gracilis muscle had a reduced media cross-sectional area and a reduced media-to-lumen ratio on the ligated side, where also the range of myogenic constriction was shifted to lower pressures. However, when expressed as a function of wall stress, diameter responses were nearly identical. [Ca(2+)](i) was higher in vessels from the ligated hindlimb at pressures above 10 mmHg, but vasoconstriction was not accompanied by changes in [Ca(2+)](i). Thus the myogenic constriction here seems due primarily to changes in intracellular calcium sensitivity, which are determined mainly by the force per cross-sectional area of the wall and therefore altered by changes in vascular structure.  相似文献   

4.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   

5.
Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. In sufficient concentration, cGMP may activate a cGMP-sensitive calcium-dependent chloride channel, causing a tight spatiotemporal coupling between release of sarcoplasmic reticulum calcium, membrane depolarization, and influx of extracellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole cell oscillations, but these remain unsynchronized between cells. Whole cell oscillations are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained vasomotion. In this state there is a rhythmic flow of calcium through voltage-sensitive calcium channels into the cytoplasm, making the frequency of established vasomotion sensitive to membrane potential. It is concluded that electrical coupling through gap junctions is likely to be responsible for the rapid synchronization across a large number of cells. Gap-junctional current between cells is due to the appearance of oscillations in the membrane potential that again depends on the entrainment of sarcoplasmic reticulum and plasma membrane within the individual cell.  相似文献   

6.
This study investigated the interaction between exposure to air pollutants and chronic hypoxia (CH). We used a hypobaric chamber (14 days at barometric pressure 380 mmHg) to produce CH in rats. Exposure to various doses of acrolein or ozone did not modify the mechanical response to cholinergic agonists. Exposure to 3 microM/min acrolein did not alter epithelium-free trachea responsiveness. In contrast, direct exposure of freshly isolated myocytes to 2 and 3 microM/min acrolein enhanced the amplitude of the first intracellular [Ca(2+)] rise in response to 0.1 microM ACh and the calcium oscillation frequency in response to 10 microM ACh. CH alone did not alter smooth muscle cross-sectional area (SMA) or epithelium-plus-submucosa thickness. CH decreased maximal contractile response (maximal force normalized to SMA) but increased sensitivity (pEC(50)) to cholinergic agonists. We conclude that unlike in normoxic rats, exposure to air pollutants does not induce airway hyperresponsiveness in CH rats, although it increased calcium signaling. These results cannot be explained by change in smooth muscle accessibility, but may be linked to the effect of CH on calcium-contraction coupling.  相似文献   

7.
The goal of the present study was to analyze the intercellular calcium communication between smooth muscle cells (SMCs) and endothelial cells (ECs) by simultaneously monitoring artery diameter and intracellular calcium concentration in a rat mesenteric arterial segment in vitro under physiological pressure (50 mmHg) and flow (50 microl/min) in a specially developed system. Intracellular calcium was expressed as the fura 2 ratio. The diameter was measured using a digital image acquisition system. Stimulation of SMCs with the alpha(1)-agonist phenylephrine (PE) caused not only an increase in the free intracellular calcium concentration of the SMCs as expected but also in the ECs, suggesting a calcium flux from the SMCs to the ECs. The gap junction uncoupler palmitoleic acid greatly reduced this increase in calcium in the ECs on stimulation of the SMCs with PE. This indicates that the signaling pathway passes through the gap junctions. Similarly, although vasomotion originates in the SMCs, calcium oscillates in both SMCs and ECs during vasomotion, suggesting again a calcium flux from the SMCs to the ECs.  相似文献   

8.
It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others report rhythmic contractions in the absence of an intact endothelium. Moreover, endothelium-derived factors have been shown to abolish vasomotion by desynchronizing the calcium signals in SMCs. By modeling the calcium dynamics of a population of SMCs coupled to a population of endothelial cells, we analyze the effects of an SMC vasoconstrictor stimulation on endothelial cells and the feedback of endothelium-derived factors. Our results show that the endothelium essentially decreases the SMCs calcium level and may move the SMCs from a steady state to an oscillatory domain, and vice versa. In the oscillatory domain, a population of coupled SMCs exhibits synchronous calcium oscillations. Outside the oscillatory domain, the coupled SMCs present only irregular calcium flashings arising from noise modeling stochastic opening of channels. Our findings provide explanations for the published contradictory experimental observations.  相似文献   

9.
Increased pressure-induced (myogenic) tone in small uteroplacental arteries from late pregnant (LP) rats has been previously observed. In this study, we hypothesized that this response may result from a diminished activity of vascular smooth muscle cell (SMC) voltage-gated delayed-rectifier K(+) (K(v)) channels, leading to membrane depolarization, augmented Ca(2+) influx, and vasoconstriction (tone). Elevation of intraluminal pressure from 10 to 60 and 100 mmHg resulted in a marked, diltiazem-sensitive rise in SMC cytosolic Ca(2+) concentration ([Ca(2+)](i)) associated with a vasoconstriction of uteroplacental arteries of LP rats. In contrast, these changes were significantly diminished in uterine arteries from nonpregnant (NP) rats. Gestational augmentation of pressure-induced Ca(2+) influx through L-type Ca(2+) channels was associated with an enhanced SMC depolarization, the appearance of electrical and [Ca(2+)](i) oscillatory activities, and vasomotion. Exposure of vessels from NP animals to 4-aminopyridine, which inhibits the activity of K(v) channels, mimicked the effects of pregnancy by increasing pressure-induced depolarization, elevation of [Ca(2+)](i), and development of myogenic tone. Furthermore, currents through K(v) channels were significantly reduced in myocytes dissociated from arteries of LP rats compared with those of NP controls. Based on these results, we conclude that decreased K(v) channel activity contributes importantly to enhanced pressure-induced depolarization, Ca(2+) entry, and increase in myogenic tone present in uteroplacental arteries from LP rats.  相似文献   

10.
The hypothesis that Rho kinase is involved in myogenic reactivity was investigated in pressurized rat tail small arteries using videomicroscopic diameter determination and calcium fluorimetry. The potent Rho kinase inhibitor Y-27632 reversibly increased vessel diameter at 80 mmHg without changing the intracellular calcium concentration ([Ca](i)) shifting the relationship between diameter change and [Ca](i) to higher calcium levels. Neither endothelium removal nor inhibition of neural transmission affected the Y-27632-induced effect. Y-27632 at 3 x 10(-6) mol/l attenuated the myogenic response in the pressure range from 10 to 120 mmHg, shifting the relationship between vessel tone and [Ca](i) to higher calcium levels. In addition, the Y-27632-induced shift of the relationship between vessel tone and [Ca](i) was larger at 80 than at 10 mmHg. These results suggest that smooth muscle cell Rho kinase in rat tail small arteries 1) is in an active state partly determining the level of the myogenic tone, and 2) alters the strength of the myogenic response by changing calcium sensitivity, probably caused by the pressure-induced activation of the kinase.  相似文献   

11.
Extracellular stimuli are often encoded in the frequency, amplitude and duration of spikes in the intracellular concentration of calcium ([Ca2+]i). However, the timing of individual [Ca2+]i-spikes in relation to the dynamics of an extracellular stimulus is still an open question. To address this question, we use a systems biology approach combining experimental and theoretical methods. Using computer simulations, we predict that more naturalistic pulsed stimuli generate precisely-timed [Ca2+]i-spikes in contrast to the application of constant stimuli of the same dose. These computational results are confirmed experimentally in single primary rat hepatocytes upon alpha1-adrenergic stimulation. Hormonal signalling in analogy to neuronal signalling thus has the potential to make use of temporal coding on the level of single cells. The [Ca2+]i-signalling cascade provides a first example for increasing the information capacity of an intracellular regulatory signal beyond the known coding mechanisms of amplitude (AM) and frequency modulation (FM).  相似文献   

12.
We explored the relationship between left ventricular (LV) pressure and intracellular free calcium concentration ([Ca](i)) in the isolated perfused mouse heart. [Ca](i) (rhod-2) and LV pressure were recorded simultaneously. In response to increases in LV volume (Frank-Starling, FS, protocol), there were increases in developed pressure (up to 250%), with no changes in pressure morphology (rise or relaxation time) or [Ca](i) (magnitude and morphology) for up to 10 min. During transient increases in the stimulus interval at a fixed LV volume (mechanical restitution, MR, protocol), developed pressure increased significantly (31.3 +/- 1.2%), with relatively small changes in peak systolic [Ca](i) (7.4 +/- 1.4%). The relaxation of [Ca](i), however, was prolonged (30.0 +/- 5.5%), resulting in prolonged pressure relaxation (21.2 +/- 1.9%) and increased area under the calcium transient that paralleled the increase in developed pressure (1:1 ratio). A model-based analysis showed that changes in LV pressure during the MR protocol could be completely explained by altered [Ca](i); it was not necessary to invoke any changes in model parameters (i.e., dynamic processes that link calcium to pressure). For the FS data, the model predicted only a change in the gain parameter; however, this change alone cannot reproduce well-established length-dependent changes in the steady-state force-pCa relationship. In summary, the mouse myocardium appears to be unique in that significant changes in peak developed pressure can occur with little or no change in the peak [Ca](i). Additionally, unlike other mammalian species, load-dependent prolongation of pressure relaxation is absent in the mouse heart, and pressure relaxation is primarily governed by intracellular free calcium relaxation.  相似文献   

13.
Vasomotion, the phenomenon of vessel diameter oscillation, regulates blood flow and resistance. The main parameters implicated in vasomotion are particularly the membrane potential and the cytosolic free calcium in smooth muscle cells. In this study, these parameters were measured in rat perfused-pressurized mesenteric artery segments. The application of norepinephrine (NE) caused rhythmic diameter contractions and membrane potential oscillations (amplitude; 5.3 +/- 0.3 mV, frequency; 0.09 +/- 0.01 Hz). Verapamil (1 microM) abolished this vasomotion. During vasomotion, 10(-5) M ouabain (Na(+)-K(+) ATPase inhibitor) decreased the amplitude of the electrical oscillations but not their frequency (amplitude; 3.7 +/- 0.3 mV, frequency; 0.08 +/- 0.002 Hz). Although a high concentration of ouabain (10(-3) M) (which exhibits non-specific effects) abolished both electrical membrane potential oscillations and vasomotion, we conclude that the Na+-K+ ATPase could not be implicated in the generation of the membrane potential oscillations. We conclude that in rat perfused-pressurized mesenteric artery, the slow wave membrane type of potential oscillation by rhythmically gating voltage-dependent calcium channels, is responsible for the oscillation of intracellular calcium and thus vasomotion.  相似文献   

14.
The pharyngeal muscles of Caenorhabditis elegans are composed of the corpus, isthmus and terminal bulb from anterior to posterior. These components are excited in a coordinated fashion to facilitate proper feeding through pumping and peristalsis. We analysed the spatiotemporal pattern of intracellular calcium dynamics in the pharyngeal muscles during feeding. We used a new ratiometric fluorescent calcium indicator and a new optical system that allows simultaneous illumination and detection at any two wavelengths. Pumping was observed with fast, repetitive and synchronous spikes in calcium concentrations in the corpus and terminal bulb, indicative of electrical coupling throughout the muscles. The posterior isthmus, however, responded to only one out of several pumping spikes to produce broad calcium transients, leading to peristalsis, the slow and gradual motion needed for efficient swallows. The excitation-calcium coupling may be uniquely modulated in this region at the level of calcium channels on the plasma membrane.  相似文献   

15.
The specific role of different isoforms of the Na,K-pump in the vascular wall is still under debate. We have previously suggested that the α(2) isoform of the Na,K-pump (α(2)), Na(+), Ca(2+)-exchange (NCX), and connexin43 form a regulatory microdomain in smooth muscle cells (SMCs), which controls intercellular communication and contractile properties of the vascular wall. We have tested this hypothesis by downregulating α(2) in cultured SMCs and in small arteries with siRNA in vivo. Intercellular communication was assessed by using membrane capacitance measurements. Arteries transfected in vivo were tested for isometric and isobaric force development in vitro; [Ca(2+)](i) was measured simultaneously. Cultured rat SMCs were well-coupled electrically, but 10 μM ouabain uncoupled them. Downregulation of α(2) reduced electrical coupling between SMCs and made them insensitive to ouabain. Downregulation of α(2) in small arteries was accompanied with significant reduction in NCX expression. Acetylcholine-induced relaxation was not different between the groups, but the endothelium-dependent hyperpolarizing factor-like component of the response was significantly diminished in α(2)-downregulated arteries. Micromolar ouabain reduced in a concentration-dependent manner the amplitude of norepinephrine (NE)-induced vasomotion. Sixty percent of the α(2)-downregulated arteries did not have vasomotion, and vasomotion in the remaining 40% was ouabain insensitive. Although ouabain increased the sensitivity to NE in the control arteries, it had no effect on α(2)-downregulated arteries. In the presence of a low NE concentration the α(2)-downregulated arteries had higher [Ca(2+)](i) and tone. However, the NE EC50 was reduced under isometric conditions, and maximal contraction was reduced under isometric and isobaric conditions. The latter was caused by a reduced Ca(2+)-sensitivity. The α(2)-downregulated arteries also had reduced contraction to vasopressin, whereas the contractile response to high K(+) was not affected. Our results demonstrate the importance of α(2) for intercellular coupling in the vascular wall and its involvement in the regulation of vascular tone.  相似文献   

16.
In experiments on the isolated superior cervical sympathetic ganglia of rats with alloxan diabetes rhythmic stimulation of preganglionic nerves was effected; summation presynaptic spikes and EPSPs of ganglionic neurons were registered. In rats with moderately severe alloxan diabetes progressive depression of rhythmic ganglion potentials was connected with suppression of the mediator emission to the impulse due to rapid exhaustion of its operational fraction. Rats with severe diabetes displayed also postsynaptic suppression of the ganglionic neurons. Dynamic characteristics of the transmitter turnover assessed on the basis of consideration of the successive patterns of posttetanic potentiation showed insignificant changes in the mediator output and a significant (by 38%) suppression of the mediator reserve per sec in comparison with control.  相似文献   

17.
The role of vascular gap junctions in the conduction of intercellular Ca2+ and vasoconstriction along small resistance arteries is not entirely understood. Some depolarizing agents trigger conducted vasoconstriction while others only evoke a local depolarization. Here we use a novel technique to investigate the temporal and spatial relationship between intercellular Ca2+ signals generated by smooth muscle action potentials (APs) and vasoconstriction in mesenteric resistance arteries (MA). Pulses of exogenous KCl to depolarize the downstream end (T1) of a 3 mm long artery increased intracellular Ca2+ associated with vasoconstriction. The spatial spread and amplitude of both depended on the duration of the pulse, with only a restricted non-conducting vasoconstriction to a 1 s pulse. While blocking smooth muscle cell (SMC) K+ channels with TEA and activating L-type voltage-gated Ca2+ channels (VGCCs) with BayK 8644 spread was dramatically facilitated, so the 1 s pulse evoked intercellular Ca2+ waves and vasoconstriction that spread along an entire artery segment 3000 μm long. Ca2+ waves spread as nifedipine-sensitive Ca2+ spikes due to SMC action potentials, and evoked vasoconstriction. Both intercellular Ca2+ and vasoconstriction spread at circa 3 mm s−1 and were independent of the endothelium. The spread but not the generation of Ca2+ spikes was reversibly blocked by the gap junction inhibitor 18β-GA. Thus, smooth muscle gap junctions enable depolarization to spread along resistance arteries, and once regenerative Ca2+-based APs occur, spread along the entire length of an artery followed by widespread vasoconstriction.  相似文献   

18.
Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state.  相似文献   

19.
Myogenic tone in the pulmonary vasculature of normoxic adult animals is minimal or nonexistent. Whereas chronic hypoxia (CH) increases basal tone in pulmonary arteries, it is unclear if a portion of this elevated tone is due to development of myogenicity. Since basal arterial RhoA activity and Rho kinase (ROK) expression are augmented by CH, we hypothesized that CH elicits myogenic reactivity in pulmonary arteries through ROK-dependent vascular smooth muscle (VSM) Ca(2+) sensitization. To test this hypothesis, we assessed the contribution of ROK to basal tone and pressure-induced vasoconstriction in endothelium-disrupted pulmonary arteries [50-300 microm inner diameter (ID)] from control and CH [4 wk at 0.5 atmosphere (atm)] rats. Arteries were loaded with fura-2 AM to continuously monitor VSM intracellular Ca(2+) concentration ([Ca(2+)](i)). Basal VSM [Ca(2+)](i) was not different between groups. The ROK inhibitor, HA-1077 (100 nM to 30 microM), caused a concentration-dependent reduction of basal tone in CH arteries but had no effect in control vessels. In contrast, PKC inhibition with GF109203X (1 microM) did not alter basal tone. Furthermore, significant vasoconstriction in response to stepwise increases in intraluminal pressure (5-45 mmHg) was observed at 12, 15, 25, and 35 mmHg in arteries (50-200 microm ID) from CH rats. This myogenic reactivity was abolished by HA-1077 (10 microM) but not by GF109203X. VSM [Ca(2+)](i) was unaltered by HA-1077, GF109203X, or increases in pressure in either group. Myogenicity was not observed in larger vessels (200-300 microm ID). We conclude that CH induces myogenic tone in small pulmonary arteries through ROK-dependent myofilament Ca(2+) sensitization.  相似文献   

20.
We have developed a mathematical model of the rat’s renal hemodynamics in the nephron level, and used that model to study flow control and signal transduction in the rat kidney. The model represents an afferent arteriole, glomerular filtration, and a segment of a short-loop nephron. The model afferent arteriole is myogenically active and represents smooth muscle membrane potential and electrical coupling. The myogenic mechanism is based on the assumption that the activity of nonselective cation channels is shifted by changes in transmural pressure, such that elevation in pressure induces vasoconstriction, which increases resistance to blood flow. From the afferent arteriole’s fluid delivery output, glomerular filtration rate is computed, based on conservation of plasma and plasma protein. Chloride concentration is then computed along the renal tubule based on solute conservation that represents water reabsorption along the proximal tubule and the water-permeable segment of the descending limb, and chloride fluxes driven by passive diffusion and active transport. The model’s autoregulatory response is predicted to maintain stable renal blood flow within a physiologic range of blood pressure values. Power spectra associated with time series predicted by the model reveal a prominent fundamental peak at ~165 mHz arising from the afferent arteriole’s spontaneous vasomotion. Periodic external forcings interact with vasomotion to introduce heterodynes into the power spectra, significantly increasing their complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号