首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured neurones, astroblasts and astrocytes from murine brain have been screened with specific tests for the presence of peptidases capable of degrading enkephalin. Bestatin-sensitive aminopeptidases represent the major enkephalin-degrading activity in all cases. The dipeptidylaminopeptidasic activity is much higher in the neuronal than the glial cultures, whereas the opposite is true for the metallopeptidase called "enkephalinase". Only trace amounts of the dipeptidylcarboxypeptidase "angiotensin-converting enzyme" have been found. We conclude that bestatin-sensitive aminopeptidases on nerve cells are probable candidates for enkephalin-inactivating enzymes, whereas the "enkephalinase" on glial cells more likely serves a scavenger function.  相似文献   

2.
A dipeptidyl carboxypeptidase activity has been localized in synaptic plasma membranes which have been prepared from isolated rat brain cortical synaptosomes. The specificity of this proteolytic activity towards various synthetic and biological active peptides is compared to the peptidase activities of intact synaptosomes. In contrast to the synaptosomal peptidases which are capable of cleaving all peptide bonds of Met-enkephalin-Arg6-Phe7 the peptidase activity associated with the synaptic plasma membrane exclusively hydrolyses a dipeptide from the carboxyl terminus of all hepta- and hexapeptides tested. The fact that this dipeptidyl carboxypeptidase does not cleave the Gly3-Phe4 peptide bond of Met-enkephalin suggests that this enzyme is different from "enkephalinase". The synaptic membrane dipeptidyl carboxypeptidase is inhibited by metal chelating agents and thiols but is not affected by compounds known to inhibit serine proteases, thermolysin and "enkephalinase".  相似文献   

3.
Nomenclature for enkephalin degrading peptidases   总被引:1,自引:0,他引:1  
L B Hersh 《Life sciences》1986,38(13):1151-1153
The use of trivial names for enkephalin degrading peptidases such as "aminoenkephalinase" and "carboxyenkephalinase" imply a specificity and cellular localization which is not inherent in any of the peptidases implicated in the degradation of endogenous enkephalins. Rather than name these enzymes on the basis of one of their many substrates, it is proposed that they be named according to their general reaction type. Such a nomenclature has already been proposed for the enkephalin degrading endopeptidase 24.11 given the trivial name "enkephalinase".  相似文献   

4.
A Dupont  Y Mérand 《Life sciences》1978,22(18):1623-1630
A sensitive and specific radioimmunoassay has been developed to study inactivation of neurotensin by hypothalamic and brain peptidases. Degrading activity of peptidases from both hypothalamus and brain seems to have similar activity. These peptidases are temperature- and time- dependent. Brain and hypothalamic enzymes of particulate fractions can be differentiated on the basis of the pH effects; brain peptidase(s) has (have) maximal activity at pH 7.4 and hypothalamic peptidase(s) displaying a maximal activity at pH 5.8. Kidneys and liver extracts contain enzyme(s) degrading neurotensin.  相似文献   

5.
A K Dua  C Pinsky  F S LaBella 《Life sciences》1985,37(11):985-992
The term "enkephalinase" has been frequently applied to enzyme activity in a variety of tissue preparations. In some cases there has been the implication that cleavage of a specific peptide bond in the enkephalin molecule results from the action of a single enzyme with the major responsibility of inactivating synaptic enkephalin. It is not known to what extent diverse enkephalin-degrading enzymes, with differing peptide bond specificities, may act in concert at any given synapse. There do exist, however, enzymes having known characteristic specificities with respect both to peptide substrates, including enkephalins, and to identifiable peptide bonds. Thus, at any given site of enkephalin release there probably resides a characteristic assembly of peptidases concerned with inactivation of this neuromediator. We propose that the term "enkephalinase" be used to encompass the entire family of enkephalin-degrading enzymes, and that "aminoenkephalinase", "carboxyenkephalinase", "endoenkephalinase" and "pseudoenkephalinase" should designate enzymes of known specificities with respect to both peptide substrates and particular peptide bonds.  相似文献   

6.
Molecular cloning and amino acid sequence of rat enkephalinase   总被引:22,自引:0,他引:22  
cDNA clones encoding rat enkephalinase (neutral endopeptidase, EC 3.4.24.11) have been isolated in lambda gt10 libraries from both brain and kidney mRNAs and the complete 742 amino acid sequence of rat enkephalinase is presented. The enzyme possesses a single transmembrane spanning domain near the N-terminal of the molecule but lacks a signal sequence. Because enkephalinase has it active site located extracellularly and is thus an ectopeptidase, we suggest that the N-terminal transmembrane region of the enzyme anchors the protein in membranes and that the majority of the protein, including the carboxy terminus, is extracellular. Enkephalinase, a zinc-containing metallo enzyme, displays homology with other zinc metallo enzymes such as carboxypeptidase A, B and E, suggesting enzymatic similarities in these enzymes.  相似文献   

7.
Multiple molecular forms of rat brain enkephalinase   总被引:4,自引:0,他引:4  
R S Rush  L B Hersh 《Life sciences》1982,31(5):445-451
Rat brain enkephalinase has been partially purified by ion exchange chromatography, chromatofocusing, and affinity chromatography on immobilized lectins. Ion exchange chromatography resolved two principle forms of enkephalinase designated A1 and A2. Both enkephalinase A1 and A2 are bound to immobilized lentil lectin while chromatography on immobilized wheat germ lectin resolved each of the principle forms into two subforms, A1, 1, A1, 2, A2, 1, and A2, 2. All four enkephalinase forms have similar, if not identical kinetic properties. The possible implications of multiple molecular forms of enkephalinases are discussed.  相似文献   

8.
New carboxylalkyl compounds derived from Phe-Leu and corresponding to the general formula C6H5-CH2-CH(R)CO-L.Leu with R = -COOH, 3, R = -CH2-COOH, 4, R = -NH-CH2-COOH, 5, R = -NH-(CH2)2-COOH, 6, have been found to inhibit the breakdown of the Gly3-Phe4 bond of [3H] Leu-enkephalin or [3H]D.Ala2-Leu-enkephalin resulting from the action of the mouse striatal metallopeptidases: "enkephalinase" or angiotensin-converting enzyme (A.C.E.). The carboxyl coordinating ability of the Zn atom seems to be significantly higher in ACE than in "enkephalinase". Moreover, IC50 values against "enkephalinase" were found in the same range whatever the length of the chain bearing the carboxyl group whereas a well-defined position of this group with respect to the Zn atom is required for strong ACE inhibition. These features suggest a larger degree of freedom of the carboxyalkyl moieties within the active site of "enkephalinase". Therefore the differential recognition of active sites of both peptidases leads to: i) N-(carboxymethyl)-L-Phe-L-Leu, 5, a competitive inhibitor of "enkephalinase" (KI = 0.7 microM) and ACE (KI = 1.2 microM) which could be used as mixed inhibitor for both enzymes; ii) N-[(R,S)-2-carboxy, 3-benzylpropanoyl]-L-Leucine, 3, a full competitive inhibitor of "enkephalinase" (KI = 0.34 microM) which does not interact with ACE (IC50 greater than 10,000 microM). This compound can be considered as the first example of a new series of highly potent and specific "enkephalinase" inhibitors.  相似文献   

9.
1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are enzymes that catalyze the hydrolysis of esters of choline.2. Both AChE and BuChE have been shown to copurify with peptidases.3. BuChE has also been shown to copurify with other proteins such as transferrin, with which it forms a stable complex. In addition, BuChE is found in association with -amyloid protein in Alzheimer brain tissues.4. Since BuChE copurifies with peptidases, we hypothesized that BuChE interacts with these enzymes and that this association had an influence on their catalytic activities. One of the peptidases that copurifies with cholinesterases has specificity similar to trypsin, hence, this enzyme was used as a model to test this hypothesis.5. Purified BuChE causes a concentration-dependent enhancement of the catalytic activity of trypsin while trypsin does not influence the catalytic activity of BuChE.6. We suggest that, in addition to its esterase activity, BuChE may assume a regulatory role by interacting with other proteins.  相似文献   

10.
The effects of nineteen AHPA* derivatives were examined on morphine analgesia by tail-flick test in rats and on enkephalinase inhibition which was based on the formation of tyrosyl-glycyl-glycine from met-enkephalin. The correlation between the enhancement of morphine analgesia in vivo and enkephalinase inhibition in vitro was analyzed. The different analogs varied considerably in the degree of enhancement of morphine analgesia and inhibition of enkephalinase. A close relationship between enkephalinase inhibition expressed by IC50 in vitro and enhancement of morphine analgesia in vivo was observed in thirteen out of nineteen AHPA derivatives examined. One of other six AHPA derivatives which showed weak effectiveness in potentiating on morphine analgesia but was highly potent as an enkephalinase inhibitor, caused potent analgesic action when it was applied intracisternally indicating poor penetration of the blood brain barrier. The possibility was discussed that some of other compounds excluded from the linear relationship might act on other enkephalin degrading enzymes such as aminopeptidase.  相似文献   

11.
There are at least two types of enzymes in brain, endopeptidases and aminopeptidases, which metabolize enkephalins. Evidence is presented to suggest that enkephalinase, an endopeptidase cleaving at the Gly-Phe bond, is specific for the endogenous enkephalinergic system. Selective inhibitors are described for each enzyme. These are parachloromercuriphenylsulfonic acid and puromycin in the case of aminopeptidases and various enkephalin fragments in the case of enkephalinase. Some characteristics of the two types of enzymes are described. Enkephalinase has many properties in common with the well-characterized brain angiotensin-converting enzyme. These two enzymes, however, behaved differently when tested for chloride dependance, for activity in several buffers and for susceptibility to specific inhibitors.  相似文献   

12.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

13.
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two fromE. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the –3, –1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes inEscherichia coli that can degrade a signal peptidein vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degredation of an intact signal peptidein vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.  相似文献   

14.
Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.  相似文献   

15.
C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed.  相似文献   

16.
Enzyme-resistant CCK analogs with high affinities for central receptors   总被引:3,自引:0,他引:3  
Based on the results of the in vitro metabolism of CCK8 by various peptidases, we have synthesized three CCK analogs: Boc-Tyr(SO3H)-Nle-Gly-Trp-(N- Me)Nle-Asp-Phe-NH2 (compound I), Boc-Tyr(SO3H)-gNle-mGly-Trp-Nle-Asp-Phe-Nh2 (compound II), Boc-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 (compound III). In in vitro enzymatic degradation studies, these compounds showed a high stability toward either enkephalinase or the enzymes present in crude rat brain membranes preparations. Moreover, in binding studies on guinea pig tissues, these CCK-related peptides were characterized by high apparent affinities for brain CCK receptors and by a broader range of affinities for pancreatic CCK receptors. This broad range of affinities was reflected by their pharmacological potencies in the guinea pig pancreatic amylase release and ileum contraction assays. These enzyme-resistant CCK analogs provide therefore valuable tools to investigate the pharmacology of CCK.  相似文献   

17.
Actinonin, previously isolated as an antibiotic and shown to be an inhibitor of aminopeptidase M (EC 3.4.11.2), has now been shown to inhibit three enkephalin-degrading enzymes from guinea-pig striatum. The values of IC50 were 0.39 microM for striatal membrane aminopeptidase ("enkephalin-aminopeptidase") and 5.6 microM striatal membrane neutral endopeptidase ("enkephalinase A"). Furthermore, soluble dipeptidylaminopeptidase in a rat whole brain homogenate was also inhibited by actinonin with the IC50 value of 1.1 microM. Actinonin administered intracisternally (i.cist., 50 micrograms) or intraperitoneally (i.p., 100 mg/kg), potentiated the analgesic action of met-enkephalin (50 micrograms i.cist.). analgesia by a tail-flick test. The potentiating activity of actinonin i.p. to met-enkephalin analgesia was almost the same potency as that of thiorphan, whereas the inhibitory activity of actinonin against enkephalinase A was 1/1000 that of thiorphan. Actinonin alone, administered either i.cist. or i.p., showed an analgesic action as estimated by the tail-flick test.  相似文献   

18.
Type I signal peptidase: an overview   总被引:5,自引:0,他引:5  
The signal hypothesis suggests that proteins contain information within their amino acid sequences for protein targeting to the membrane. These distinct targeting sequences are cleaved by specific enzymes known as signal peptidases. There are various type of signal peptidases known such as type I, type II, and type IV. Type I signal peptidases are indispensable enzymes, which catalyze the cleavage of the amino-terminal signal-peptide sequences from preproteins, which are translocated across biological membranes. These enzymes belong to a novel group of serine proteases, which generally utilize a Ser-Lys or Ser-His catalytic dyad instead of the prototypical Ser-His-Asp triad. Despite having no distinct consensus sequence other than a commonly found 'Ala-X-Ala' motif preceding the cleavage site, signal sequences are recognized by type I signal peptidase with high fidelity. Type I signal peptidases have been found in bacteria, archaea, fungi, plants, and animals. In this review, I present an overview of bacterial type I signal peptidases and describe some of their properties in detail.  相似文献   

19.
Benzyloxycarbonyl derivatives (Z) of amino acid hydroxamates have been found to inhibit the bacterial metalloendopeptidase thermolysin and enkephalin-degrading enzymes from rat brain. The hydroxamate derivatives of glycine, leucine, phenylalanine and D-phenylalanine inhibit thermolysin with KI values in the range of 3–23 μM. They also inhibit the enkephalin-degrading endopeptidase (enkephalinase) and aminopeptidase with different efficiencies, depending on the structure of the amino acid employed. Thus, Z-Gly-NHOH inhibits the enkephalinase and aminopeptidase with IC50 values of 1 μM and 300 μM, respectively, whereas Z-D-Phe-NHOH inhibits the corresponding enzymes with IC50 values of 0.2 μM and 1.5 μM.  相似文献   

20.
In order to elucidate the role of aminopeptidases in enkephalin catabolism in rat brain, the local distribution of two types of cerebral cellular membrane aminopeptidases (puromycin-sensitive and puromycin-insensitive ones) and of the enkephalin system marker, enkephalinase A, was studied. It was found that the distribution patterns of the former enzymes differ essentially from that of enkephalinase A. Study of coupling between the enzymatic activities in different regions of rat brain revealed a strong correlation between the activities of puromycin-insensitive aminopeptidase and enkephalinase A in midbrain (including hypothalamus). It was supposed that in midbrain the role of aminopeptidase M in intrasynaptic inactivation of enkephalins is much more conspicuous than in other regions of rat brain. The puromycin-sensitive aminopeptidase activity does not seem to play a role in enkephalin catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号