首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insect spruce budworm (Choristoneura fumiferana)(Cf) produces a number of isoforms of its highly active antifreeze protein (CfAFP). Although most of the CfAFP isoforms are in the 9-kDa range, isoforms containing a 30- or 31-amino acid insertion have also been identified. Here we describe the functional and structural analysis of a selected long isoform, CfAFP-501. X-ray crystal structure determination reveals that the 31-amino acid insertion found in CfAFP-501 forms two additional loops within its highly regular beta-helical structure. This effectively extends the area of the two-dimensional Thr array and ice-binding surface of the protein. The larger isoform has 3 times the thermal hysteresis activity of the 9-kDa CfAFP-337. As well, a deletion of the 31-amino acid insertion within CfAFP-501 to form CfAFP-501-Delta-2-loop, results in a protein with reduced activity similar to the shorter CfAFP isoforms. Thus, the enhanced antifreeze activity of CfAFP-501 is directly correlated to the length of its beta-helical structure and hence the size of its ice-binding face.  相似文献   

2.
Serine acetyltransferase (SAT) catalyzes the first step of cysteine synthesis in microorganisms and higher plants. Here we present the 2.2 A crystal structure of SAT from Escherichia coli, which is a dimer of trimers, in complex with cysteine. The SAT monomer consists of an amino-terminal alpha-helical domain and a carboxyl-terminal left-handed beta-helix. We identify His(158) and Asp(143) as essential residues that form a catalytic triad with the substrate for acetyl transfer. This structure shows the mechanism by which cysteine inhibits SAT activity and thus controls its own synthesis. Cysteine is found to bind at the serine substrate site and not the acetyl-CoA site that had been reported previously. On the basis of the geometry around the cysteine binding site, we are able to suggest a mechanism for the O-acetylation of serine by SAT. We also compare the structure of SAT with other left-handed beta-helical structures.  相似文献   

3.
Structure and distribution of pentapeptide repeats in bacteria.   总被引:14,自引:1,他引:13       下载免费PDF全文
We report the discovery of a novel family of proteins, each member contains tandem pentapeptide (five residue) repeats, described by the motif A(D/N)LXX. Members of this family are both membrane bound and cytoplasmic. The function of these repeats is uncertain, but they may have a targeting or structural function rather than enzymatic activity. This family is most common in cyanobacteria, suggesting a function related to cyanobacterial-specific metabolism. Although no experimental information is available for the structure of this family, it is predicted that the tandem pentapeptide repeats will form a right-handed beta-helical structure. A structural model of the pentapeptide repeats is presented.  相似文献   

4.
Accessory protein recruitment motifs in clathrin-mediated endocytosis   总被引:11,自引:0,他引:11  
Clathrin-mediated endocytosis depends upon the interaction of accessory proteins with the alpha-ear of the AP-2 adaptor. We present structural characterization of these regulatory interactions. DPF and DPW motif peptides derived from eps15 and epsin bind in type I beta turn conformations to a conserved pocket on the alpha-ear platform. We show evidence for a second binding site that is DPW motif specific. The structure of a complex with an AP-2 binding segment from amphiphysin reveals a novel binding motif that we term FxDxF, which is engaged in an extended conformation by a unique surface of the platform domain. The FxDxF motif is also used by AP180 and the 170 kDa isoform of synaptojanin and can be found in several potential endocytic proteins, including HIP1, CD2AP, and PLAP. A mechanism of clathrin assembly regulation is suggested by three different AP-2 engagement modes.  相似文献   

5.
6.
The pectate lyase family of proteins has been shown to fold into a novel domain motif, the right-handed parallel beta-helix. As a means of gaining insight to the solution structure of the pectate lyases, the enzymes were subjected to limited proteolytic digestion by the endoproteases AspN, GluC and trypsin. The effects of proteolytic cleavage on enzymatic activity were determined, and the early products of proteolysis were identified by capillary electrophoresis, MALDI-TOF mass spectrometry and HPLC. A single peptide bond between Lys158 and Asp159 in pectate lyase B (PLb) was cleaved by both AspN and trypsin, with no detectable hydrolysis of PLb by GluC. Pectate lyase E (PLe) was hydrolyzed by trypsin between Lys164 and Asp165, a bond on an analogous loop structure found to be susceptible to proteolytic attack in PLb. AspN and GluC preferentially hydrolyzed peptide bonds (at Asp127 and Glu124, respectively) on another loop extending from the central beta-helical core of PLe. A single beta-strand of the central cylinder of the pectate lyase C (PLc) molecule was susceptible to all three proteases used. These data demonstrate that the most susceptible peptide bonds to proteolytic scission within the native enzymes lie on or near one of the three parallel beta-sheets that compose the core domain motif Despite the proximity of the proteolytic cleavages to the catalytic sites of the enzymes, significant retention of lyase activity was observed after partial proteolysis, indicating preservation of functional tertiary structure in the proteolytic products.  相似文献   

7.
Crystal structure of plant pectin methylesterase   总被引:6,自引:0,他引:6  
Pectin is a principal component in the primary cell wall of plants. During cell development, pectin is modified by pectin methylesterases to give different properties to the cell wall. This report describes the first crystal structure of a plant pectin methylesterase. The beta-helical structure embodies a central cleft, lined by several aromatic residues, that has been deduced to be suitable for pectin binding. The active site is found at the center of this cleft where Asp157 is suggested to act as the nucleophile, Asp136 as an acid/base and Gln113/Gln135 to form an anion hole to stabilize the transition state.  相似文献   

8.
We present an approach for designing self-assembled nanostructures from naturally occurring building block segments obtained from native protein structures. We focus on structural motifs from left-handed beta-helical proteins. We selected 17 motifs. Copies of each of the motifs are stacked one atop the other. The obtained structures were simulated for long periods by using Molecular Dynamics to test their ability to retain their organization over time. We observed that a structural model based on the self-assembly of a motif from E. coli galactoside acetyltransferase produced a very stable tube. We studied the interactions that help maintain the conformational stability of the systems, focusing on the role of specific amino acids at specific positions. Analysis of these systems and a mutational study of selected candidates revealed that the presence of proline and glycine residues in the loops of beta-helical structures greatly enhances the structural stability of the systems.  相似文献   

9.
Fan QR  Hendrickson WA 《Proteins》2008,72(1):393-401
Proteins with leucine-rich repeats (LRRs) specialize in mediating protein-protein interactions. The hormone binding portion of the receptor for follicle stimulating hormone (FSH) is an LRR protein by sequence, and the crystal structure of this domain from human FSH receptor in a complex with FSH shows that it does indeed have an LRR structure. It differs from other LRR domains, however, in being an all-beta protein composed of highly irregular repeats and having only slight overall curvature. Despite these distinctions and a superficial resemblance to beta-helical proteins, the binding domain of FSH receptor clearly is an LRR protein. The structure does consist of two parts with distinctively different curvatures. Comparison with the structures of other LRR-containing proteins shows a correlation between curvature and main-chain hydrogen bonding pattern of the parallel beta-sheet. The hormone-binding site is located at the concave surface of the receptor structure, a feature common to proteins with LRR motifs. Analysis of the ligand-binding site of LRR-containing proteins reveals that they generally utilize extensive interface area and a large number of charged residues to facilitate high-affinity protein-protein interactions.  相似文献   

10.
The protein deleted in liver cancer 1 (DLC1) interacts with the tensin family of focal adhesion proteins to play a role as a tumor suppressor in a wide spectrum of human cancers. This interaction has been proven to be crucial to the oncogenic inhibitory capacity and focal adhesion localization of DLC1. The phosphotyrosine binding (PTB) domain of tensin2 predominantly interacts with a novel site on DLC1, not the canonical NPXY motif. In this study, we characterized this interaction biochemically and determined the complex structure of tensin2 PTB domain with DLC1 peptide by NMR spectroscopy. Our HADDOCK-derived complex structure model elucidates the molecular mechanism by which tensin2 PTB domain recognizes DLC1 peptide and reveals a PTB-peptide binding mode that is unique in that peptide occupies the binding site opposite to the canonical NPXY motif interaction site with the peptide utilizing a non-canonical binding motif to bind in an extended conformation and that the N-terminal helix, which is unique to some Shc- and Dab-like PTB domains, is required for binding. Mutations of crucial residues defined for the PTB-DLC1 interaction affected the co-localization of DLC1 and tensin2 in cells and abolished DLC1-mediated growth suppression of hepatocellular carcinoma cells. This tensin2 PTB-DLC1 peptide complex with a novel binding mode extends the versatile binding repertoire of the PTB domains in mediating diverse cellular signaling pathways as well as provides a molecular and structural basis for better understanding the tumor-suppressive activity of DLC1 and tensin2.  相似文献   

11.
The ADP/ATP carrier (AAC) transports matrix ATP and cytosolic ADP across the inner mitochondrial membrane (IMM). It is well known that cardiolipin (CL) plays an important role in regulating the function of AAC, yet the underlying mechanism still remains elusive. AAC is composed of three homologous domains, and three specific CL binding sites are located at the domain-domain interfaces near the matrix side. Here we report an in-depth investigation on the dynamic properties of the bound CL within the three specific sites through all-atom molecular dynamics simulations of up to 13 μs in total. Our results highlight the importance of the basic and polar residues in CL binding. The basic residues from the linker helix and/or the [Y/W/F][K/R]G motif enable the bound CL to form an intra-domain binding mode, and the canonical inter-domain binding mode only forms when these basic residues are occupied by an additional phospholipid. Of special significance, differences in the basic and polar residues lead to remarkable asymmetry among the three specific CL binding sites. We found that the bound CL at the interface of domains 2 and 3 predominantly adopts inter-domain binding mode, while CLs at the other two sites have much more intra-domain populations. This is consistent with the asymmetric crystal structure of the matrix state (m-state) AAC which implies an asymmetric transport mechanism. The dynamic equilibrium between the inter-domain and intra-domain binding modes observed in our simulations could be highly important for the bound CLs to adapt to the movements during state transitions.  相似文献   

12.
Escherichia coli threonyl-tRNA synthetase (ThrRS) represses the translation of its own messenger RNA by binding to an operator located upstream of the initiation codon. The crystal structure of the complex between the core of ThrRS and the essential domain of the operator shows that the mRNA uses the recognition mode of the tRNA anticodon loop to initiate binding. The final positioning of the operator, upon which the control mechanism is based, relies on a characteristic RNA motif adapted to the enzyme surface. The finding of other thrS operators that have this conserved motif leads to a generalization of this regulatory mechanism to a subset of Gram-negative bacteria.  相似文献   

13.
Glycoprotein Ib (GPIb) is a platelet receptor with a critical role in mediating the arrest of platelets at sites of vascular damage. GPIb binds to the A1 domain of von Willebrand factor (vWF-A1) at high blood shear, initiating platelet adhesion and contributing to the formation of a thrombus. To investigate the molecular basis of GPIb regulation and ligand binding, we have determined the structure of the N-terminal domain of the GPIb(alpha) chain (residues 1-279). This structure is the first determined from the cell adhesion/signaling class of leucine-rich repeat (LRR) proteins and reveals the topology of the characteristic disulfide-bonded flanking regions. The fold consists of an N-terminal beta-hairpin, eight leucine-rich repeats, a disulfide-bonded loop, and a C-terminal anionic region. The structure also demonstrates a novel LRR motif in the form of an M-shaped arrangement of three tandem beta-turns. Negatively charged binding surfaces on the LRR concave face and anionic region indicate two-step binding kinetics to vWF-A1, which can be regulated by an unmasking mechanism involving conformational change of a key loop. Using molecular docking of the GPIb and vWF-A1 crystal structures, we were also able to model the GPIb.vWF-A1 complex.  相似文献   

14.
15.
Guo JT  Wetzel R  Xu Y 《Proteins》2004,57(2):357-364
Amyloid fibrils, a key pathological feature of Alzheimer's disease (AD) and other amyloidosis implicated in neurodegeneration, have a characteristic cross-beta structure. Here we present a structural model for the core of amyloid fibrils formed by the Abeta peptide using computational approaches and experimental data. Abeta(15-36) was threaded against the parallel beta-helical proteins. Our multi-layer model was constructed using the top scoring template 1lxa, a left-handed parallel beta-helical protein. This six-rung helical model has in-register repeats of the Abeta(15-36) sequence. Each rung has three beta-strands separated by two turns. The model was tested using molecular dynamics simulations in explicit water, and is in good agreement with a number of experimental observations. In addition, a model based on right-handed helical proteins is also described. The core structural model described here might serve as the building block of the Abeta(1-40) amyloid fibril as well as some other amyloid fibrils.  相似文献   

16.
iota-Carrageenases are polysaccharide hydrolases that cleave the beta-1,4 linkages between the d-galactose-4-sulfate and 3, 6-anhydro-d-galactose-2-sulfate residues in the red algal galactans known as iota-carrageenans. We report here on the purification of iota-carrageenase activity from the marine bacterium Zobellia galactanovorans and on the characterization of iota-carrageenase structural genes. Genomic libraries from this latter bacterium as well as from Alteromonas fortis were functionally screened for the presence of iota-carrageenase(+) clones. The Z. galactanovorans and A. fortis iota-carrageenase genes encode homologous proteins of 53.4 and 54.8 kDa, respectively. Based on hydrophobic cluster analysis and on the (1)H NMR monitoring of the products of the overexpressed A. fortis iota-carrageenase, these enzymes appear to form a new family of glycoside hydrolases, unrelated to that of kappa-carrageenases and with an inverting mechanism of hydrolysis. They both feature a 45-amino acid-long N-terminal segment with sequence similarity to the N-terminal region of several other polysaccharidases. In those for which a three-dimensional structure is available, this conspicuous segment, also deemed "glycanase motif" (Chua, J. E. H., Manning, P. A., and Morona, R. (1999) Microbiology (Reading) 145, 1649-1659), corresponds to a strand-helix-strand "cap" that covers the N-terminal end of a common, right-handed beta-helical fold.  相似文献   

17.
Ye Q  Wang H  Zheng J  Wei Q  Jia Z 《Proteins》2008,73(1):19-27
The activity of the protein phosphatase calcineurin (CN) is regulated by an autoinhibition mechanism wherein several domains from its catalytic A subunit, including the calmodulin binding domain (CaMBD), block access to its active site. Upon binding of Ca2+ and calmodulin (Ca2+/CaM) to CaMBD, the autoinhibitory domains dissociate from the catalytic groove, thus activating the enzyme. To date, the structure of the CN/CaM/Ca2+ complex has not been determined in its entirety. Previously, we determined the structure of a fusion protein consisting of CaM and a 25-residue peptide taken from the CaMBD, joined by a 5-glycine linker. This structure revealed a novel CaM binding motif. However, the presence of the extraneous glycine linker cast doubt on the authenticity of this structure as an accurate representation of CN/CaM binding in vivo. Thus, here, we have determined the crystal structure of CaM complexed with the 25-residue CaMBD peptide without the glycine linker at a resolution of 2.1 A. The structure is essentially identical to the fusion construction which displays CaM bound to the CaMBD peptide as a dimer with an open, elongated conformation. The N-lobe from one molecule and C-lobe from another encompass and bind the CaMBD peptide. Thus, it validates the existence of this novel CaM binding motif. Our experiments suggest that the dimeric CaM/CaMBD complex exists in solution, which is unambiguously validated using a carefully-designed CaM-sepharose pull-down experiment. We discuss structural features that produce this novel binding motif, including the role of the CaMBD peptide residues Arg-408, Val-409, and Phe-410, which work to provide rigidity to the otherwise flexible central CaM helix joining the N- and C-lobes, ultimately keeping these lobes apart and forcing "head-to-tail" dimerization to attain the requisite N- and C-lobe pairing for CaMBD binding.  相似文献   

18.
During clathrin‐mediated endocytosis, adaptor proteins play central roles in coordinating the assembly of clathrin coats and cargo selection. Here we characterize the binding of the yeast endocytic adaptor Sla1p to clathrin through a variant clathrin‐binding motif that is negatively regulated by the Sla1p SHD2 domain. The crystal structure of SHD2 identifies the domain as a sterile α‐motif (SAM) domain and shows a propensity to oligomerize. By co‐immunoprecipitation, Sla1p binds to clathrin and self‐associates in vivo. Mutations in the clathrin‐binding motif that abolish clathrin binding and structure‐based mutations in SHD2 that impede self‐association result in endocytosis defects and altered dynamics of Sla1p assembly at the sites of endocytosis. These results define a novel mechanism for negative regulation of clathrin binding by an adaptor and suggest a role for SAM domains in clathrin‐mediated endocytosis.  相似文献   

19.
Cyclase-associated protein (CAP or Srv2p) is a modular actin monomer binding protein that directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. The crystal structure of the C-terminal dimerization and actin monomer binding domain (C-CAP) reveals a highly unusual dimer, composed of monomers possessing six coils of right-handed beta-helix flanked by antiparallel beta-strands. Domain swapping, involving the last two strands of each monomer, results in the formation of an extended dimer with an extensive interface. This structural and biochemical characterization provides new insights into the organization and potential mechanistic properties of the multiprotein assemblies that integrate dynamic actin processes into the overall physiology of the cell. An unanticipated finding is that the unique tertiary structure of the C-CAP monomer provides a structural model for a wide range of molecules, including RP2 and cofactor C, proteins involved in X-linked retinitis pigmentosa and tubulin maturation, respectively, as well as several uncharacterized proteins that exhibit very diverse domain organizations. Thus, the unusual right-handed beta-helical fold present in C-CAP appears to support a wide range of biological functions.  相似文献   

20.
Chen LT  Ko TP  Chang YW  Lin KA  Wang AH  Wang TF 《PloS one》2007,2(9):e858
RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filament with three monomers per helical pitch. This structure reveals conformational details of the first ssDNA binding disordered loop (denoted L1 motif) and the dsDNA binding N-terminal domain (NTD). L1 and NTD together form an outwardly open palm structure on the outer surface of the helical filament. Inside this palm structure, five conserved basic amino acid residues (K27, K60, R117, R223 and R229) surround a 25 A pocket that is wide enough to accommodate anionic ssDNA, dsDNA or both. Biochemical analyses demonstrate that these five positively charged residues are essential for DNA binding and for RadA-catalyzed D-loop formation. We suggest that the overwound right-handed RadA filament represents a functional conformation in the homology search and pairing reaction. A new structural model is proposed for the homologous interactions between a RadA-ssDNA nucleoprotein filament and its dsDNA target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号