首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Candida tropicalis enoyl thioester reductase Etr1p and the Saccharomyces cerevisiae homologue Mrf1p catalyse the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (FAS). Unlike prokaryotic enoyl thioester reductases (ETRs), which belong to the short-chain dehydrogenases/reductases (SDR), Etr1p and Mrf1p represent structurally distinguishable ETRs that belong to the medium-chain dehydrogenases/reductases (MDR) superfamily, indicating independent origin of two separate classes of ETRs. The crystal structures of Etr1p, the Etr1p-NADPH complex and the Etr1Y79Np mutant were refined to 1.70A, 2.25A and 2.60A resolution, respectively. The native fold of Etr1p was maintained in Etr1Y79Np, but the mutant had only 0.1% of Etr1p catalytic activity remaining and failed to rescue the respiratory deficient phenotype of the mrf1Delta strain. Mutagenesis of Tyr73 in Mrf1p, corresponding to Tyr79 in Etr1p, produced similar results. Our data indicate that the mitochondrial reductase activity is indispensable for respiratory function in yeast, emphasizing the significance of Mrf1p (Etr1p) and mitochondrial FAS for the integrity of the respiratory competent organelle.  相似文献   

3.
A data base search with YBR026c/MRF1', which encodes trans-2-enoyl thioester reductase of the intramitochondrial fatty acid synthesis (FAS) type II in yeast (Torkko, J. M., Koivuranta, K. T., Miinalainen, I. J., Yagi, A. I., Schmitz, W., Kastaniotis, A. J., Airenne, T. T., Gurvitz, A., and Hiltunen, K. J. (2001) Mol. Cell. Biol. 21, 6243-6253), revealed the clone AA393871 (HsNrbf-1, nuclear receptor binding factor 1) in human EST data bank. Expression of HsNrbf-1, tagged C-terminally with green fluorescent protein, in HeLa cells, resulted in a punctated fluorescence signal, superimposable with the MitoTracker Red dye. Wild-type polypeptide was immunoisolated from the extract of bovine heart mitochondria. Recombinant HsNrbf-1p reduces trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. Furthermore, expression of HsNRBF-1 in the ybr026cDelta yeast strain restored mitochondrial respiratory function allowing growth on glycerol. These findings provide evidence that Nrbf-1ps act as a mitochondrial 2-enoyl thioester reductase, and mammalian cells may possess bacterial type fatty acid synthetase (FAS type II) in mitochondria, in addition to FAS type I in the cytoplasm.  相似文献   

4.
It has been recently recognized that mammalian mitochondria contain most, if not all, of the components of fatty acid synthesis type II (FAS II). Among the components identified is 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (Etr1/Mecr), which catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters, generating saturated acyl-groups. Although the FAS type II pathway is highly conserved, its physiological role in fatty acid synthesis, which apparently occurs simultaneously with breakdown of fatty acids in the same subcellular compartment in mammals, has remained an enigma. To study the in vivo function of the mitochondrial FAS in mammals, with special reference to Mecr, we generated mice overexpressing Mecr under control of the mouse metallothionein-1 promoter. These Mecr transgenic mice developed cardiac abnormalities as demonstrated by echocardiography in vivo, heart perfusion ex vivo, and electron microscopy in situ. Moreover, the Mecr transgenic mice showed decreased performance in endurance exercise testing. Our results showed a ventricular dilatation behind impaired heart function upon Mecr overexpression, concurrent with appearance of dysmorphic mitochondria. Furthermore, the data suggested that inappropriate expression of genes of FAS II can result in the development of hereditary cardiomyopathy.  相似文献   

5.
The so-called thioredoxin system, thioredoxin (Trx), thioredoxin reductase (Trr), and NADPH, acts as a disulfide reductase system and can protect cells against oxidative stress. In Saccharomyces cerevisiae, two thioredoxins (Trx1 and Trx2) and one thioredoxin reductase (Trr1) have been characterized, all of them located in the cytoplasm. We have identified and characterized a novel thioredoxin system in S. cerevisiae. The TRX3 gene codes for a 14-kDa protein containing the characteristic thioredoxin active site (WCGPC). The TRR2 gene codes for a protein of 37 kDa with the active-site motif (CAVC) present in prokaryotic thioredoxin reductases and binding sites for NADPH and FAD. We cloned and expressed both proteins in Escherichia coli, and the recombinant Trx3 and Trr2 proteins were active in the insulin reduction assay. Trx3 and Trr2 proteins have N-terminal domain extensions with characteristics of signals for import into mitochondria. By immunoblotting analysis of Saccharomyces subcellular fractions, we provide evidence that these proteins are located in mitochondria. We have also constructed S. cerevisiae strains null in Trx3 and Trr2 proteins and tested them for sensitivity to hydrogen peroxide. The Deltatrr2 mutant was more sensitive to H2O2, whereas the Deltatrx3 mutant was as sensitive as the wild type. These results suggest an important role of the mitochondrial thioredoxin reductase in protection against oxidative stress in S. cerevisiae.  相似文献   

6.
Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated specifically to curtailing mitochondrial FASII in metazoans. The availability of affected survivors will help to position C. elegans as an excellent model for future pursuits in the emerging field of mitochondrial FASII research.  相似文献   

7.
流产布氏杆菌烯脂酰ACP还原酶的鉴定   总被引:1,自引:0,他引:1  
烯脂酰ACP还原酶是细菌脂肪酸合成的关键酶之一.流产布氏杆菌基因组有2个注释为烯脂酰ACP还原酶基因fabI的同源基因:fabI1fabI2.由这2个fabI同源基因编码的蛋白质分别与大肠杆菌FabI有50%和51%的同源性,且都拥有与大肠杆菌FabI一样的催化中心Tyr-(Xaa)6-Lys序列.分别用携带这2个同源基因的质粒载体转化大肠杆菌fabI温度敏感突变菌株JP1111.转化子能在42℃生长,表明这2个基因均能遗传互补大肠杆菌fabI突变,并使此菌株恢复脂肪酸的合成.另外,体外酶学分析显示,由这2个同源基因编码的蛋白质都拥有烯脂酰ACP还原酶活性,均能参与细菌脂肪酸合成.上述结果证实,流产布氏杆菌同时拥有2个同种类型的烯脂酰ACP还原酶,是一种新的烯脂酰ACP多样性的表现.  相似文献   

8.
Genes encoding enzymes involved in biosynthesis of very long chain fatty acids were significantly up-regulated during early cotton fiber development. Two cDNAs, GhKCR1 and GhKCR2 encoding putative cotton 3-ketoacyl-CoA reductases that catalyze the second step in fatty acid elongation, were isolated from developing cotton fibers. GhKCRI and 2 contain open reading frames of 963 bp and 924 bp encoding proteins of 320 and 307 amino acid residues,respectively. Quantatitive RT-PCR analysis showed that both these genes were highly preferentially expressed during the cotton fiber elongation period with much lower levels recovered from roots, stems and leaves. GhKCR1 and 2 showed 30%-32% identity to Saccharomyces cerevisiae Ybr159p at the deduced amino acid level. These cotton cDNAs were cloned and expressed in yeast haploid ybr159wA mutant that was deficient in 3-ketoacyl-CoA reductase activity.Wild-type growth rate was restored in vbr159wA cells that expressed either GhKCRI or 2. Further analysis showed that GhKCR1 and 2 were co-sedimented within the membranous pellet fraction after high-speed centrifugation, similar to the yeast endoplasmic reticulum marker ScKar2p. Both GhKCR(s) showed NADPH-dependent 3-ketoacyl-CoA reductase activity in an in vitro assay system using palmitoyl-CoA and malonyl-CoA as substrates. Our results suggest that GhKCR1 and 2 are functional orthologues of ScYbr159p.  相似文献   

9.
10.
We have identified a novel mitochondrial targeting signal in the precursor of the DNA helicase Hmi1p of Saccharomyces cerevisiae that is located at the C terminus of the protein. Similar to classical N-terminal presequences, this C-terminal targeting signal consists of a stretch of positively charged amino acids that has the potential to form an amphipathic alpha-helix. Deletion of the C-terminal 36 amino acids of helicase resulted in loss of import into mitochondria, while deletion of the N-terminal 40 amino acids had no effect. When C-terminal regions of the helicase were placed at the C terminus of a passenger protein, dihydrofolate reductase, the resulting fusion proteins were directed into the mitochondrial matrix, and the C-terminal region of helicase became proteolytically processed. Import of helicase occurs in a C- to N-terminal direction; it requires a membrane potential and the TIM17-23 translocase together with mitochondrial Hsp70. Helicase is the only mitochondrial matrix protein identified thus far with a cleavable targeting signal at its C terminus.  相似文献   

11.
Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.  相似文献   

12.
Here, we report the identification of a novel hydrolase in Saccharomyces cerevisiae. Ldh1p (systematic name, Ybr204cp) comprises the typical GXSXG-type lipase motif of members of the α/β-hydrolase family and shares some features with the peroxisomal lipase Lpx1p. Both proteins carry a putative peroxisomal targeting signal type1 (PTS1) and can be aligned with two regions of homology. While Lpx1p is known as a peroxisomal enzyme, subcellular localization studies revealed that Ldh1p is predominantly localized to lipid droplets, the storage compartment of nonpolar lipids. Ldh1p is not required for the function and biogenesis of peroxisomes, and targeting of Ldh1p to lipid droplets occurs independently of the PTS1 receptor Pex5p.  相似文献   

13.
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.  相似文献   

14.
Several 3-keto-synthases have been studied, including the soluble fatty acid synthases, those involved in polyketide synthesis, and the FAE1-like 3-ketoacyl-CoA synthases. All of these condensing enzymes have a common ancestor and an enzymatic mechanism that involves a catalytic triad consisting of Cys, His, and His/Asn. In contrast to the FAE1-like family of enzymes that mediate plant microsomal fatty acid elongation, the condensation step of elongation in animals and in fungi appears to be mediated by the Elop homologs. Curiously these proteins bear no resemblance to the well characterized 3-keto-synthases. There are three ELO genes in yeast that encode the homologous Elo1p, Elo2p, and Elo3p proteins. Elo2p and Elo3p are required for synthesis of the very long-chain fatty acids, and mutants lacking both Elo2p and Elo3p are inviable confirming that the very long-chain fatty acids are essential for cellular functions. In this study we show that heterologous expression of several Arabidopsis FAE1-like genes rescues the lethality of an elo2Deltaelo3Delta yeast mutant. We further demonstrate that FAE1 acts in conjunction with the 3-keto and trans-2,3-enoyl reductases of the elongase system. These studies indicate that even though the plant-specific FAE1 family of condensing enzymes evolved independently of the Elop family of condensing enzymes, they utilize the same reductases and presumably dehydratase that the Elop proteins rely upon.  相似文献   

15.
Mdj1p, a DnaJ homolog in the mitochondria of Saccharomyces cerevisiae, is involved in the folding of proteins in the mitochondrial matrix. In this capacity, Mdj1p cooperates with mitochondrial Hsp70 (mt-Hsp70). Here, we analyzed the role of Mdj1p as a chaperone for newly synthesized proteins encoded by mitochondrial DNA and for nucleus-encoded proteins as they enter the mitochondrial matrix. A series of conditional mutants of mdj1 was constructed. Mutations in the various functional domains led to a partial loss of Mdj1p function. The mutant Mdj1 proteins were defective in protecting the tester protein firefly luciferase against heat-induced aggregation in isolated mitochondria. The mitochondrially encoded var1 protein showed enhanced aggregation after synthesis in mdj1 mutant mitochondria. Mdj1p and mt-Hsp70 were found in a complex with nascent polypeptide chains on mitochondrial ribosomes. Mdj1p was not found to interact with translocation intermediates of imported proteins spanning the two membranes and exposing short segments into the matrix, in accordance with the lack of requirement of Mdj1p in the mt-Hsp70-mediated protein import into mitochondria. On the other hand, precursor proteins in transit which had further entered the matrix were found in a complex with Mdj1p. Our results suggest that Mdj1p together with mt-Hsp70 plays an important role as a chaperone for mitochondrially synthesized polypeptide chains emerging from the ribosome and for translocating proteins at a late import step.  相似文献   

16.
The present study was designed to determine the action of the 2-acetylenic acid thioester on mitochondrial fatty acid chain elongation and beta-oxidation. Addition of 2-decynoyl CoA to a rat liver mitochondrial suspension resulted in a significant stimulation of the rate of oxidation of NADPH and NADH. This enhanced oxidation rate was not due to the mitochondrial trans-2-enoyl CoA reductase-catalyzed conversion of the 2-acetylenic acid thioester to the saturated product, decanoate, as measured by gas-liquid chromatography. On the contrary, the mitochondrial trans-2-enoyl CoA reductase activity was markedly inhibited by the 2-acetylenic acid derivative, as evidenced by the decrease in the reduction of trans-2-decenoyl CoA to decanoic acid. Incubation of the mitochondrial fraction with either NADPH or NADH and 2-decynol CoA resulted in the gas chromatographic identification of three products: beta-ketodecanoate, beta-hydroxydecanoate, and trans-2-decenoate. In the absence of reduced pyridine nucleotide, a single product was formed and identified as beta-ketodecanoate. Confirmation of the identity of this product was obtained by the observation of the formation of the Mg2+-enolate complex (303-nm absorbance peak). These results suggest that, although the 2-decynoyl CoA is an inhibitor of mitochondrial trans-2-enoyl CoA reductase activity, it is a substrate for the mitochondrial trans-2-enoyl CoA hydratase (crotonase). This was confirmed by incubation of 2-decynoyl CoA with commercially purified liver mitochondrial crotonase. The beta-ketodecanoate is formed in a two-step process: hydration of the 2-decynoyl CoA to an unstable enol intermediate which undergoes rearrangement to the beta-ketodecanoyl CoA. Interestingly, although the mitochondrial crotonase can utilize the 2-acetylenic acid thioesters, this was not the case for the peroxisomal bifunctional hydratase which was markedly inhibited by varying concentrations of 2-decynoyl CoA.  相似文献   

17.
Acyl carrier proteins play a central role in metabolism by transporting substrates in a wide variety of pathways including the biosynthesis of fatty acids and polyketides. However, despite their importance, there is a paucity of direct structural information concerning the interaction of ACPs with enzymes in these pathways. Here we report the structure of an acyl-ACP substrate bound to the Escherichia coli fatty acid biosynthesis enoyl reductase enzyme (FabI), based on a combination of x-ray crystallography and molecular dynamics simulation. The structural data are in agreement with kinetic studies on wild-type and mutant FabIs, and reveal that the complex is primarily stabilized by interactions between acidic residues in the ACP helix alpha2 and a patch of basic residues adjacent to the FabI substrate-binding loop. Unexpectedly, the acyl-pantetheine thioester carbonyl is not hydrogen-bonded to Tyr(156), a conserved component of the short chain alcohol dehydrogenase/reductase superfamily active site triad. FabI is a proven target for drug discovery and the present structure provides insight into the molecular determinants that regulate the interaction of ACPs with target proteins.  相似文献   

18.
Enoyl-[acyl-carrier-protein] (ACP) reductase is a key enzyme in type II fatty-acid synthases that catalyzes the last step in each elongation cycle. The FabI component of Bacillus subtilis (bsFabI) was identified in the genomic data base by homology to the Escherichia coli protein. bsFabI was cloned and purified and exhibited properties similar to those of E. coli FabI, including a marked preference for NADH over NADPH as a cofactor. Overexpression of the B. subtilis fabI gene complemented the temperature-sensitive growth phenotype of an E. coli fabI mutant. Triclosan was a slow-binding inhibitor of bsFabI and formed a stable bsFabI.NAD(+). triclosan ternary complex. Analysis of the B. subtilis genomic data base revealed a second open reading frame (ygaA) that was predicted to encode a protein with a relatively low overall similarity to FabI, but contained the Tyr-Xaa(6)-Lys enoyl-ACP reductase catalytic architecture. The purified YgaA protein catalyzed the NADPH-dependent reduction of trans-2-enoyl thioesters of both N-acetylcysteamine and ACP. YgaA was reversibly inhibited by triclosan, but did not form the stable ternary complex characteristic of the FabI proteins. Expression of YgaA complemented the fabI(ts) defect in E. coli and conferred complete triclosan resistance. Single knockouts of the ygaA or fabI gene in B. subtilis were viable, but double knockouts were not obtained. The fabI knockout was as sensitive as the wild-type strain to triclosan, whereas the ygaA knockout was 250-fold more sensitive to the drug. YgaA was renamed FabL to denote the discovery of a new family of proteins that carry out the enoyl-ACP reductase step in type II fatty-acid synthases.  相似文献   

19.
The TSC13/YDL015c gene was identified in a screen for suppressors of the calcium sensitivity of csg2Delta mutants that are defective in sphingolipid synthesis. The fatty acid moiety of sphingolipids in Saccharomyces cerevisiae is a very long chain fatty acid (VLCFA) that is synthesized by a microsomal enzyme system that lengthens the palmitate produced by cytosolic fatty acid synthase by two carbon units in each cycle of elongation. The TSC13 gene encodes a protein required for elongation, possibly the enoyl reductase that catalyzes the last step in each cycle of elongation. The tsc13 mutant accumulates high levels of long-chain bases as well as ceramides that harbor fatty acids with chain lengths shorter than 26 carbons. These phenotypes are exacerbated by the deletion of either the ELO2 or ELO3 gene, both of which have previously been shown to be required for VLCFA synthesis. Compromising the synthesis of malonyl coenzyme A (malonyl-CoA) by inactivating acetyl-CoA carboxylase in a tsc13 mutant is lethal, further supporting a role of Tsc13p in VLCFA synthesis. Tsc13p coimmunoprecipitates with Elo2p and Elo3p, suggesting that the elongating proteins are organized in a complex. Tsc13p localizes to the endoplasmic reticulum and is highly enriched in a novel structure marking nuclear-vacuolar junctions.  相似文献   

20.
Among the recently recognized aspects of mitochondrial functions, in yeast as well as humans, is their ability to synthesize fatty acids in a malonyl-CoA dependent manner. We describe here the identification of the 3-hydroxyacyl-ACP dehydratase involved in mitochondrial fatty acid synthesis. A colony-colour-sectoring screen was applied in Saccharomyces cerevisiae in a search for mutants that, when grown on a non-fermentable carbon source, were unable to lose a plasmid that carried a chimeric construct coding for mitochondrially localized bacterial analogue. Our mutants, which are respiratory deficient, lack cytochromes and display abnormal mitochondrial morphology, were found to have a lesion in the yeast YHR067w/RMD12 gene. The Yhr067p is predicted to be a member of the thioesterase/thioester dehydratase-isomerase superfamily enzymes. Hydratase 2 activity in mitochondrial extracts from cells overexpressing YHR067w was increased. These overexpressing cells also display a striking mitochondrial enlargement phenotype. We conclude that YHR067w encodes a novel mitochondrial 3-hydroxyacyl-thioester dehydratase 2 and suggest renaming it HTD2. The mitochondrial phenotypes of the null and overexpression mutants suggest a crucial role of YHR067w in maintenance of mitochondrial respiratory competence and morphology in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号