首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxycarboxylic acid monomers can be used to prepare industrially important polymers. Enzymatic production of such hydroxycarboxylic acids is often preferred to chemical production since the reactions are run at ambient temperature, do not require strongly acidic or basic reaction conditions, and produce the desired product with high selectivity at high conversion. However, native enzymes often do not perform desired reactions with the efficiency required for commercial applications. Protein engineering was used to significantly increase the specific activity of nitrilase from Acidovorax facilis 72W for the conversion of 3-hydroxyvaleronitrile to 3-hydroxyvaleric acid. Overexpression of engineered nitrilase enzymes in Escherichia coli, combined with immobilization of whole cells in alginate beads that can be recycled many times has facilitated the development of a commercially viable bioprocess for production of 3-hydroxyvaleric acid.  相似文献   

2.
3.
Lactic acid is widely used in many industries, especially in the production of poly-lactic acid. Bacillus coagulans is a promising lactic acid producer in industrial fermentation due to its thermophilic property. In this study, we developed the first genome-scale metabolic model (GEM) of B. coagulans iBag597, together with an enzyme-constrained model ec-iBag597. We measured strain-specific biomass composition and integrated the data into a biomass equation. Then, we validated iBag597 against experimental data generated in this study, including amino acid requirements and carbon source utilization, showing that simulations were generally consistent with the experimental results. Subsequently, we carried out chemostats to investigate the effects of specific growth rate and culture pH on metabolism of B. coagulans. Meanwhile, we used iBag597 to estimate the intracellular metabolic fluxes for those conditions. The results showed that B. coagulans was capable of generating ATP via multiple pathways, and switched among them in response to various conditions. With ec-iBag597, we estimated the protein cost and protein efficiency for each ATP-producing pathway to investigate the switches. Our models pave the way for systems biology of B. coagulans, and our findings suggest that maintaining a proper growth rate and selecting an optimal pH are beneficial for lactate fermentation.  相似文献   

4.
代谢工程从20世纪90年代初期发展至今已有近30年历史,对微生物菌种改良和选育工作起到了极大的推动作用.芳香族化合物是一类可以通过微生物发酵生产的化学品,广泛应用于医药、食品、饲料和材料等领域.利用代谢工程手段对莽草酸和芳香族氨基酸合成途径进行理性改造,微生物细胞可以定向地大量积累人们需要的各种芳香族化合物.笔者对近3...  相似文献   

5.
A widely used design principle for metabolic engineering of microorganisms aims to introduce interventions that enforce growth-coupled product synthesis such that the product of interest becomes a (mandatory) by-product of growth. However, different variants and partially contradicting notions of growth-coupled production (GCP) exist. Herein, we propose an ontology for the different degrees of GCP and clarify their relationships. Ordered by coupling degree, we distinguish four major classes: potentially, weakly, and directionally growth-coupled production (pGCP, wGCP, dGCP) as well as substrate-uptake coupled production (SUCP). We then extend the framework of Minimal Cut Sets (MCS), previously used to compute dGCP and SUCP strain designs, to allow inclusion of implicit optimality constraints, a feature required to compute pGCP and wGCP designs. This extension closes the gap between MCS-based and bilevel-based strain design approaches and enables computation (and comparison) of designs for all GCP classes within a single framework. By computing GCP strain designs for a range of products, we illustrate the hierarchical relationships between the different coupling degrees. We find that feasibility of coupling is not affected by the chosen GCP degree and that strongest coupling (SUCP) requires often only one or two more interventions than wGCP and dGCP. Finally, we show that the principle of coupling can be generalized to couple product synthesis with other cellular functions than growth, for example, with net ATP formation. This work provides important theoretical results and algorithmic developments and a unified terminology for computational strain design based on GCP.  相似文献   

6.
刘维喜  付晶  章博  陈涛 《生物工程学报》2013,29(8):1161-1172
当前,全球经济的高速发展与日益减少的石油资源储备进一步加剧了能源供需矛盾。人类对开发利用可再生的纤维素生物质资源寄予厚望。木糖是木质纤维素水解产物中含量仅次于葡萄糖的一种单糖,因此对木糖高效率生物转化的研究成为影响其工业化前景的关键因素之一。针对近几年的研究,文中综述了生物转化木糖方面的进展,包括木糖代谢途径的鉴定和设计、木糖运输途径的改造、生物基化学品制备。为了解决当前全球面临的能源危机与环境问题,运用合成生物学技术发展新一代生物燃料技术,特别是开发能够代谢木糖高产乙醇的微生物工程菌株是实现可持续发展的重要方式。  相似文献   

7.
Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides.

  相似文献   


8.
In this report, small-scale culture and bioreactor experiments were used to compare and improve the heterologous production of the antibiotic erythromycin A across a series of engineered prototype Escherichia coli strains. The original strain, termed BAP1(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4, pGro7), was designed to allow full erythromycin A biosynthesis from the exogenous addition of propionate. This strain was then compared against two alternatives hypothesized to increase final product titer. Strain TB3(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4, pGro7) is a derivative of BAP1 designed to increase biosynthetic pathway carbon flow as a result of a ygfH deletion; whereas, strain TB3(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4-2, pGro7) provided an extra copy of a key deoxysugar glycosyltransferase gene. Production was compared across the three strains with TB3(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4, pGro7) showing significant improvement in erythronolide B (EB), 3-mycarosylerythronolide B (MEB), and erythromycin A titers. This strain was further tested in the context of batch bioreactor production experiments with time-course titers leveling at 4 mg/L, representing an approximately sevenfold increase in final erythromycin A titer.  相似文献   

9.
Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has resulted in much new biological information. Case-specific contextualization of this information has been performed using comparative and functional genomic tools. Genomics data are also the basis for constructing genome-scale metabolic models, and these models have helped in the contextualization of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass.  相似文献   

10.
11.
Therapeutic protein productivity and glycosylation pattern highly rely on cell metabolism. Cell culture medium composition and feeding strategy are critical to regulate cell metabolism. In this study, the relationship between toxic metabolic inhibitors and their nutrient precursors was explored to identify the critical medium components toward cell growth and generation of metabolic by-products. Generic CHO metabolic model was tailored and integrated with CHO fed-batch metabolomic data to obtain a cell line- and process-specific model. Flux balance analysis study was conducted on toxic metabolites cytidine monophosphate, guanosine monophosphate and n-acetylputrescine—all of which were previously reported to generate from endogenous cell metabolism—by mapping them to a compartmentalized carbon utilization network. Using this approach, the study projected high level of inhibitory metabolites accumulation when comparing three industrially relevant fed-batch feeding conditions one against another, from which the results were validated via a dose-dependent amino acids spiking study. In the end, a medium optimization design was employed to lower the amount of supplemented nutrients, of which improvements in critical process performance were realized at 40% increase in peak viable cell density (VCD), 15% increase in integral VCD, and 37% increase in growth rate. Tight control of toxic by-products was also achieved, as the study measured decreased inhibitory metabolites accumulation across all conditions. Overall, the study successfully presented a digital twin approach to investigate the intertwined relationship between supplemented medium constituents and downstream toxic metabolites generated through host cell metabolism, further elucidating different control strategies capable of improving cellular phenotypes and regulating toxic inhibitors.  相似文献   

12.
In this study, step variations in temperature, pH, and carbon substrate feeding rate were performed within five high cell density Escherichia coli fermentations to assess whether intraexperiment step changes, can principally be used to exploit the process operation space in a design of experiment manner. A dynamic process modeling approach was adopted to determine parameter interactions. A bioreactor model was integrated with an artificial neural network that describes biomass and product formation rates as function of varied fed‐batch fermentation conditions for heterologous protein production. A model reliability measure was introduced to assess in which process region the model can be expected to predict process states accurately. It was found that the model could accurately predict process states of multiple fermentations performed at fixed conditions within the determined validity domain. The results suggest that intraexperimental variations of process conditions could be used to reduce the number of experiments by a factor, which in limit would be equivalent to the number of intraexperimental variations per experiment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1343–1352, 2016  相似文献   

13.
14.
衣康酸(itaconic acid,IA)是一种白色结晶状的不饱和二元羧酸,它是化学和制药工业中许多相关化合物的前体,被广泛应用于树脂、塑料、胶乳和超吸附剂等的工业生产中。与化学法生产衣康酸相比,生物法具有原料来源广泛,生产过程能耗低,不污染环境等优点。介绍了衣康酸合成的生物代谢途径,以及在野生型宿主和异源宿主中生产衣康酸和提高衣康酸产量的生物技术,为今后开展利用生物技术生产衣康酸的研究提供参考。  相似文献   

15.
A fermentation process was developed for production of indigo from glucose using recombinant Escherichia coli. This was achieved by modifying the tryptophan pathway to cause high-level indole production and adding the Pseudomonas putida genes encoding naphthalene dioxygenase (NDO). In comparison to a tryptophan-overproducing strain, the first indigo-producing strain made less than half of the expected amount of indigo. Severe inactivation of the first enzyme of aromatic biosynthesis, 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase (the aroG fbr gene product), was observed in cells collected from indigo fermentations. Subsequent in vitro experiments revealed that DAHP synthase was inactivated by exposure to the spontaneous chemical conversion of indoxyl to indigo. Indigo production was thereafter improved by increasing the gene dosage of aroG fbr or by increasing substrate availability to DAHP synthase in vivo by either amplifying the tktA (transketolase) gene or inactivating both isozymes of pyruvate kinase. By combining all three strategies for enhancing DAHP formation in the cell, a 60% increase in indigo production was achieved. Metabolic engineering was then further applied to eliminate a byproduct of the spontaneous conversion of indoxyl to indigo, thereby solving a serious problem with the use of bio-indigo in the final denim dyeing application. Journal of Industrial Microbiology & Biotechnology (2002) 28, 127–133 DOI: 10.1038/sj/jim/7000228 Received 20 May 2001/ Accepted in revised form 10 November 2001  相似文献   

16.
17.
The identification of feasible operating conditions during the early stages of bioprocess development is implemented frequently through High Throughput (HT) studies. These typically employ techniques based on regression analysis, such as Design of Experiments. In this work, an alternative approach, based on a previously developed variant of the Simplex algorithm, is compared to the conventional regression‐based method for three experimental systems involving polishing chromatography and protein refolding. This Simplex algorithm variant was found to be more effective in identifying superior operating conditions, and in fact it reached the global optimum in most cases involving multiple optima. By contrast, the regression‐based method often failed to reach the global optimum, and in many cases reached poor operating conditions. The Simplex‐based method is further shown to be robust in dealing with noisy experimental data, and requires fewer experiments than regression‐based methods to reach favorable operating conditions. The Simplex‐variant also lends itself to the use of HT analytical methods, when they are available, which can assist in avoiding analytical bottlenecks. It is suggested that this Simplex‐variant is ideally suited to rapid optimization in early‐phase process development. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:404–419, 2016  相似文献   

18.
公认食品安全的酿酒酵母(Saccharomyces cerevisiae)是合成生物学中被广泛研究的底盘细胞,常作为生产高值或大宗化学品的微生物细胞工厂。近年来,通过各种代谢工程改造策略,已有大量化学品的合成途径在酿酒酵母中建立并优化,且部分化学品具备了产业化价值。作为真核生物,酿酒酵母具有完整的细胞内膜系统及其组成的复杂细胞器区室,而这些细胞器区室往往含有某些化学品合成所必需的较高浓度前体底物(如线粒体中的乙酰辅酶A),或更加充足的酶、辅因子、能量等,可为目标产物的生物合成提供更适宜的物理、化学环境,但同时不同细胞器的结构特点有时也成为特定化合物合成的障碍。为此,研究人员在深入分析不同细胞器自身特点的基础上,结合目标化学品合成途径与细胞器之间的适配度,对细胞器开展了大量针对性改造工作以提高产物合成效率。本文详细综述了酿酒酵母中线粒体、过氧化物酶体、高尔基体、内质网、脂滴和液泡等细胞器的途径改造及优化策略,以及利用细胞器区室化合成化学品的研究进展,并对目前存在的困难和挑战以及未来研究方向进行了总结与展望。  相似文献   

19.
L-缬氨酸作为一种支链氨基酸,广泛应用于医药和饲料等领域。本研究借助多种代谢工程策略相结合的方法,构建了生产L-缬氨酸的微生物细胞工厂,实现了L-缬氨酸的高效生产。首先,通过增强糖酵解途径、减弱副产物代谢途径相结合的方式,强化了L-缬氨酸合成前体丙酮酸的供给;其次,针对L-缬氨酸合成路径关键酶—乙酰羟酸合酶进行定点突变,提高了菌株的抗反馈抑制能力,并利用启动子工程策略,优化了路径关键酶的基因表达水平;最后,利用辅因子工程策略,改变了乙酰羟酸还原异构酶和支链氨基酸转氨酶的辅因子偏好性,由偏好NADPH转变为偏好NADH,从而提高了L-缬氨酸的合成能力。在5L发酵罐中,最优谷氨酸棒杆菌工程菌株Corynebacterium glutamicum K020的L-缬氨酸产量、得率和生产强度分别达到了110g/L、0.51g/g和2.29 g/(L·h)。  相似文献   

20.
The object of the study was to compare the capability of glibenclamide to block the effects of K+-ATP channel activators on action potential duration and steady state whole cell current to its efficiency in counteracting the effects of hypoxia or metabolic poisons in the presence of glycolytic substrate. The modulation of action potential duration by 30 M glibenclamide was tested in perfused hearts subjected to hypoxia or to the K+-ATP channel opener pinacidil. Similar protocols were used to study the modifications of the steady state whole cell current in isolated ventricular myocytes. It was found that glibenclamide did not prevent early action potential shortening induced by hypoxia but produced a partial recovery after 15 min of exposure. At the steady state the action potential duration had lengthened by 53±6% at plateau level and 42±3% at 95% repolarization. In contrast, action potential shortening induced by 100 M pinacidil was fully reversed by glibenclamide within 2 min. Freshly dispersed ventricular myocytes were characterized in control conditions as for the properties of the steady state current. This current, measured at the end of 450 ms long pulses showed typical inward rectification that was abolished by 50 M Ba2+. Cyanide (2 mM), carbonyl-cyanide m-chlorophenylhydrazone (CCCP, 200 nM) and BRL 38227 (30 M) produced characteristic increases in time independent outward currents. Glibenclamide abolished the outward current induced by BRL 38227 and the concomitant action potential shortening. Addition of cyanide in the presence of glibenclamide and BRL 38227 produced a new increase in outward current accompanied by action potential shortening. In the absence of K+-ATP channel activators, glibenclamide partly inhibited the CCCP induced current. Our data suggested that the delayed onset of glibenclamide action in hypoxic hearts is not due to diffusion barriers. They rather support the view that mechanisms other than K+-ATP channel activation could determine the early action potential shortening in whole hearts. The partial recovery observed under glibenclamide may be due, in part, to channel desensitization but also reflect the contribution of more than one current system to the action potential shortening because the glibenclamide insensitive fraction of the CCCP induced current is partly blocked by low concentrations of Ba2+. Differences with other data in the literature are attributed to the degree to metabolic blockade, to species differences, and to the inherent heterogeneities of the whole heart model where non-muscle cells may modulate the response to hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号