首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is required both as a substrate for the generation of lipid-derived second messengers as well as an intact lipid for many aspects of cell signaling, endo- and exocytosis, and reorganization of the cytoskeleton. ADP ribosylation factor (ARF) proteins regulate PI(4,5)P(2) synthesis, and here we have examined whether this is due to direct activation of Type I phosphatidylinositol 4-phosphate (PIP) 5-kinase or indirectly by phosphatidate (PA) derived from phospholipase D (PLD) in HL60 cells. ARF1 and ARF6 are both expressed in HL60 cells and can be depleted from the cells by permeabilization. Both ARFs increased the levels of PIP(2) (PI(4,5)P(2), PI(3,5)P(2), or PI(3,4)P(2) isomers) at the expense of PIP when added back to permeabilized cells. The PIP(2) could be hydrolyzed by phospholipase C, identifying it as PI(4,5)P(2). However, the ARF1-stimulated pool of PI(4,5)P(2) was accessible to the phospholipase C more efficiently in the presence of phosphatidylinositol transfer protein-alpha. To examine the role of PLD in the regulation of PI(4,5)P(2) synthesis, we used butanol to diminish the PLD-derived PA. PI(4,5)P(2) synthesis stimulated by ARF1 was not blocked by 0.5% butanol but could be blocked by 1.5% butanol. Although 0.5% butanol was optimal for maximal transphosphatidylation, PA production was still detectable. In contrast, 1.5% butanol was found to inhibit the activation of PLD by ARF1 and also decrease PIP levels by 50%. Thus the toxicity of 1.5% butanol prevented us from concluding whether PA was an important factor in raising PI(4,5)P(2) levels. To circumvent the use of alcohols, an ARF1 point mutant was identified (N52R-ARF1) that could selectively activate PIP 5-kinase alpha activity but not PLD activity. N52R-ARF1 was still able to increase PI(4,5)P(2) levels but at reduced efficiency. We therefore conclude that both PA derived from the PLD pathway and ARF proteins, by directly activating PIP 5-kinase, contribute to the regulation of PI(4,5)P(2) synthesis at the plasma membrane in HL60 cells.  相似文献   

2.
In eukaryotes, calcium signalling has been linked to hydrolysis of the phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The final enzyme in the synthesis of this phosphoinositide, a Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K), is activated by the small G protein ADP-ribosylation factor 1 (ARF1). In mammals, the ARF-PIP5K pathway is a key regulator of cell motility, secretion and cell signalling. We report the characterisation of a unique, putative bifunctional PIP5K in the human malaria parasite Plasmodium falciparum. The protein comprises a C-terminal, functional PIP5K domain with catalytic specificity for phosphatidylinositol 4-phosphate. The recombinant enzyme is activated by ARF1 but not phosphatidic acid. The protein also incorporates an unusual N-terminal domain with potential helix-loop-helix EF-hand-like motifs that is a member of the neuronal calcium sensor family (NCS). Intriguingly, NCS-1 has been shown to stimulate phosphatidylinositol 4-phosphate synthesis by activating mammalian and yeast phosphatidylinositol 4-kinase β in vitro in a calcium-dependent manner. The unexpected physical attachment of an NCS-like domain to the plasmodial PIP5K might reflect a unique functional link between the calcium and PtdIns(4,5)P2 pathways allowing modulation of PtdIns(4,5)P2 production in response to changes in intracellular calcium concentrations within the parasite.  相似文献   

3.
Type I and type II phosphatidylinositol phosphate (PIP) kinases generate the lipid second messenger phosphatidylinositol (PtdIns) 4,5-bisphosphate and thus play fundamental roles in the regulation of many cellular processes. Although the two kinase families are highly homologous, they phosphorylate distinct substrates and are functionally non-redundant. Type I PIP kinases phosphorylate PtdIns 4-phosphate at the D-5 hydroxyl group and are consequently PtdIns 4-phosphate 5-kinases. By contrast, type II PIP kinases are PtdIns 5-phosphate 4-kinases that phosphorylate PtdIns 5-phosphate at the D-4 position. Type I PIP kinases, in addition, also phosphorylate other phosphoinositides in vitro and in vivo and thus have the potential to generate multiple lipid second messengers. To understand how these enzymes differentiate between stereoisomeric substrates, we used a site-directed mutagenesis approach. We show that a single amino acid substitution in the activation loop, A381E in IIbeta and the corresponding mutation E362A in Ibeta, is sufficient to swap substrate specificity between these PIP kinases. In addition to its role in substrate specificity, the type I activation loop is also key in subcellular targeting. The Ibeta(E362A) mutant and other mutants with reduced PtdIns 4-phosphate binding affinity were largely cytosolic when expressed in mammalian cells in contrast to wild-type Ibeta which targets to the plasma membrane. These results clearly establish the role of the activation loop in determining both signaling specificity and plasma membrane targeting of type I PIP kinases.  相似文献   

4.
Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.  相似文献   

5.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of the lipid bilayer but plays an important role in various cellular functions, including exocytosis and endocytosis. Recently, PI(4,5)P2 was shown to form microdomains in the plasma membrane. In this study, we investigated the relationship between the spatial organization of PI(4,5)P2 microdomains and exocytotic machineries in clonal rat pheochromocytoma PC12 cells. Both PI(4,5)P2 and syntaxin, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein essential for exocytosis, exhibited punctate clusters in isolated plasma membranes. The number of PI(4,5)P2 microdomains colocalizing with syntaxin clusters and large dense core vesicles (LDCVs) was decreased after catecholamine release. Alternatively, the expression of type I phosphatidylinositol-4-phosphate 5-kinase (PIP5KI) increased the number of PI(4,5)P2 microdomains at syntaxin clusters with docked LDCVs and enhanced exocytotic activity, possibly by increasing the number of release sites. About half of the PI(4,5)P2 microdomains were not colocalized with Thy-1, a specific marker of lipid rafts, and the colocalization of transfected PIP5KI with syntaxin clusters was observed. These results suggest that the formation of PI(4,5)P2 microdomains at syntaxin clusters with docked LDCVs is essential for Ca2+-dependent exocytosis.  相似文献   

6.
To better understand the molecular mechanisms of platelet granule secretion, we have evaluated the role of type II phosphatidylinositol (PtdIns) 5-phosphate 4-kinase in agonist-induced platelet alpha-granule secretion. SFLLRN-stimulated alpha-granule secretion from SL-O-permeabilized platelets was inhibited by either antibodies directed at type II PtdIns 5-phosphate 4-kinase or by a kinase-impaired point mutant of type IIbeta PtdIns 5-phosphate 4-kinase. In contrast, recombinant type IIbeta PtdIns 5-phosphate 4-kinase augmented SFLLRN-stimulated alpha-granule secretion from SL-O-permeabilized platelets. SFLLRN-stimulated alpha-granule secretion was inhibited by a protein kinase C-specific inhibitor peptide or bisindolylmaleimide I. Phorbol 12-myristate 13-acetate-stimulated alpha-granule secretion was inhibited by anti-type II PtdIns 5-phosphate 4-kinase antibodies or the kinase-impaired point mutant of type IIbeta PtdIns 5-phosphate 4-kinase and augmented by recombinant type IIbeta PtdIns 5-phosphate 4-kinase. Immunoblot analysis demonstrated that type II PtdIns 5-phosphate 4-kinase remained associated with SL-O-permeabilized platelets when incubated in the presence, but not the absence, of SFLLRN. This SFLLRN-induced translocation of type II PtdIns 5-phosphate 4-kinase was blocked by either the protein kinase C-specific inhibitor peptide or bisindolylmaleimide I. In addition to stimulating alpha-granule secretion, both SFLLRN and PMA enhanced the association of a fluorescein isothiocyanate-labeled peptide derived from the PtdIns (4,5)P(2)-binding domain of gelsolin to permeabilized platelets. Agonist-induced recruitment of the PtdIns (4,5)P(2)-binding domain was inhibited by neomycin, bisindolylmaleimide I, and anti-type II PtdIns 5-phosphate 4-kinase antibody. These results suggest a mechanism whereby protein kinase C-mediated translocation of type II PtdIns 5-phosphate 4-kinase leads to the recruitment of PtdIns (4,5)P(2)-binding proteins.  相似文献   

7.
It is well known that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) plays important roles not only as a precursor lipid for generating second messengers but also as a regulator of cytoskeletal re-organization. The last step of PtdIns(4,5)P2 synthesis is catalyzed by PtdIns monophosphate(PIP) kinase. So far, three type I PIP kinases(alpha, beta, and gamma), which phosphorylate PtdIns(4) to PtdIns(4,5)P2, and three type II PIP kinases(alpha, beta, gamma), which phosphorylate PtdIns(5)P to PtdIns(4,5)P2 have been found. On the other hand, several inositolpolyphosphate 5-phosphatases which convert PtdIns(4,5)P2 to PtdIns(4) are known. Among them, synaptojanin, which associates with tyrosine kinase receptors through an adaptor protein, Ash/Grb2, in response to growth factors, is capable of hydrolyzing PtdIns(4,5)P2 bound to actin regulatory proteins, resulting in actin filament re-organization downstream of tyrosine kinases.  相似文献   

8.
Phosphatidylinositol 4,5-biphosphate (PIP(2)) modulates the function of numerous ion transporters and channels, as well as cell signaling and cytoskeletal proteins. To study PIP(2) levels of cells without radiolabeling, we have developed a new method to quantify anionic phospholipid species. Phospholipids are extracted and deacylated to glycero-head groups, which are then separated by anion-exchange HPLC and detected by suppressed conductivity measurements. The major anionic head groups can be quantified in single runs with practical detection limits of about 100 pmol, and the D3 isoforms of phosphatidylinositol phosphate (PIP) and PIP(2) are detected as shoulder peaks. In HeLa, Hek 293 and COS cells, as well as intact heart, PIP(2) amounts to 0.5 to 1.5% of total anionic phospholipid (10 to 30 micromol/liter cell water or 0.15 to 0.45 nmol/mg protein). In cell cultures, overexpression of Type I PIP5-kinase specifically increases PIP(2), whereas overexpression of Type II PI4-kinase can increase both PIP and PIP(2). Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and the D3 isomers of PIP(2) are detected after treatment of cells with pervanadate; in yeast, overexpression of a phosphatidylinositol 3-kinase (VPS34) specifically increases phosphatidylinositol 3-phosphate (PI3P). Using isolated cardiac membranes, lipid kinase and lipid phosphatase activities can be monitored with the same methods. Upon addition of ATP, PIP increases while PIP(2) remains low; exogenous PIP(2) is rapidly degraded to PIP and phosphatidylinositol (PI). In summary, the HPLC methods described here can be used to probe multiple aspects of phosphatidylinositide (Ptide) metabolism without radiolabeling.  相似文献   

9.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics.  相似文献   

10.
The polyamine spermine (N,N'bis[3-aminopropyl]-1,4-butanediamine) activates phosphatidylinositol-4-phosphate 5-kinase (PtdIns(4)P5K) and phosphatidylinositol 4-kinase (PtdIns4K) in vitro. Spermine concentration increases that occur in proliferating cells were approximated in streptolysin O-permeabilized HL60 cells. When phospholipase C was activated by GTPgammaS in the presence of PITPalpha, 0.1-1.2 mM spermine evoked increases in PtdIns(4,5)P(2) contents in a dose-dependent manner to 110-170% of control and concomitantly decreased inositol phosphate formation by 10-50%. Spermine-induced increases in PtdIns(4,5)P(2) content in permeabilized cells also occurred during GTPgammaS stimulation in the absence of PITPalpha, were augmented in the presence of PITPalpha, occurred in unstimulated cells and were additive to PtdIns(4,5)P(2) formation evoked by ARF1, another activator of phosphoinositide kinases. Slowly developing spermine-evoked increases in PtdIns(4,5)P(2) contents occurred in nonpermeabilized cells that were abolished in the presence of a spermine transport inhibitor. Data are consistent with spermine at physiological concentrations evoking a PITPalpha-dependent shift in formation of PtdIns(4,5)P(2) from compartments that contained an active phospholipase C to compartments that were separated from an active PLC and from PtdIns(4,5)P(2) formed by ARF1.  相似文献   

11.
Recent work from our laboratory demonstrated that phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), are required to maintain the structural integrity of the Golgi apparatus. To investigate the role of these lipids in regulating Golgi structure and function, we developed a novel assay to follow the release of post-Golgi vesicles. Isolated rat liver Golgi membranes were incubated with [(3)H]CMP sialic acid to radiolabel endogenous soluble and membrane glycoproteins present in the late Golgi and trans-Golgi network. The release of post-Golgi secretory vesicles was determined by measuring incorporation of (3)H-labeled proteins into a medium speed supernatant. Vesicle budding was dependent on temperature, cytosol, energy and time. Electron microscopy of Golgi fractions prior to and after incubation demonstrated that the stacked Golgi cisternae generated a heterogeneous population of vesicles (50- to 350-nm diameter). Inhibition of phospholipase D-mediated PA synthesis, by incubation with 1-butanol, resulted in the complete fragmentation of the Golgi membranes in vitro into 50- to 100-nm vesicles; this correlated with diminished PtdIns(4,5)P(2) synthesis. Following alcohol washout, PA synthesis resumed and in the presence of cytosol PtdIns(4,5)P(2) synthesis was restored. Most significantly, under these conditions the fragmented Golgi elements reformed into flattened cisternae and the re-assembled Golgi supported vesicle release. These data demonstrate that inositol phospholipid synthesis is essential for the structure and function of the Golgi apparatus.  相似文献   

12.
Phosphoinositides (PI) are synthesized and turned over by specific kinases, phosphatases, and lipases that ensure the proper localization of discrete PI isoforms at distinct membranes. We analyzed the role of the yeast synaptojanin-like proteins using a strain that expressed only a temperature-conditional allele of SJL2. Our analysis demonstrated that inactivation of the yeast synaptojanins leads to increased cellular levels of phosphatidylinositol (3,5)-bisphosphate and phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)), accompanied by defects in actin organization, endocytosis, and clathrin-mediated sorting between the Golgi and endosomes. The phenotypes observed in synaptojanin-deficient cells correlated with accumulation of PtdIns(4,5)P(2), because these effects were rescued by mutations in MSS4 or a mutant form of Sjl2p that harbors only PI 5-phosphatase activity. We utilized green fluorescent protein-pleckstrin homology domain chimeras (termed FLAREs for fluorescent lipid-associated reporters) with distinct PI-binding specificities to visualize pools of PtdIns(4,5)P(2) and phosphatidylinositol 4-phosphate in yeast. PtdIns(4,5)P(2) localized to the plasma membrane in a manner dependent on Mss4p activity. On inactivation of the yeast synaptojanins, PtdIns(4,5)P(2) accumulated in intracellular compartments, as well as the cell surface. In contrast, phosphatidylinositol 4-phosphate generated by Pik1p localized in intracellular compartments. Taken together, our results demonstrate that the yeast synaptojanins control the localization of PtdIns(4,5)P(2) in vivo and provide further evidence for the compartmentalization of different PI species.  相似文献   

13.
ADP-ribosylation factor (ARF) 6 regulates endosomal plasma membrane trafficking in many cell types, but is also suggested to play a role in Ca2+-dependent dense-core vesicle (DCV) exocytosis in neuroendocrine cells. In the present work, expression of the constitutively active GTPase-defective ARF6Q67L mutant in PC12 cells was found to inhibit Ca2+-dependent DCV exocytosis. The inhibition of exocytosis was accompanied by accumulation of ARFQ67L, phosphatidylinositol 4,5-bisphosphate (PIP2), and the phosphatidylinositol 4-phosphate 5-kinase type I (PIP5KI) on endosomal membranes with their corresponding depletion from the plasma membrane. That the depletion of PIP2 and PIP5K from the plasma membrane caused the inhibition of DCV exocytosis was demonstrated directly in permeable cell reconstitution studies in which overexpression or addition of PIP5KIgamma restored Ca2+-dependent exocytosis. The restoration of exocytosis in ARF6Q67L-expressing permeable cells unexpectedly exhibited a Ca2+ dependence, which was attributed to the dephosphorylation and activation of PIP5K. Increased Ca2+ and dephosphorylation stimulated the association of PIP5KIgamma with ARF6. The results reveal a mechanism by which Ca2+ influx promotes increased ARF6-dependent synthesis of PIP2. We conclude that ARF6 plays a role in Ca2+-dependent DCV exocytosis by regulating the activity of PIP5K for the synthesis of an essential plasma membrane pool of PIP2.  相似文献   

14.
Phosphatidic acid (PA) production by receptor-stimulated phospholipase D is believed to play an important role in the regulation of cell function. The second messenger function of PA remains to be elucidated. PA can bind and affect the activities of different enzymes and here we summarise the current status of activation of Type I phosphatidylinositol 4-phosphate 5-kinase by PA. Type 1 phosphatidylinositol 4-phosphate 5-kinase is also regulated by ARF proteins as is phospholipase D and we discuss the contributions of ARF and PA towards phosphatidylinositol(4,5)bisphosphate synthesis at the plasma membrane.  相似文献   

15.
Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P2 and PI(4,5)P2-synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P2. PIP5-kinase Iα bound PI(4,5)P2, and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P2. Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P2.  相似文献   

16.
BACKGROUND: Phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a key second messenger found ubiquitously in higher eukaryotic cells. The activation of Class I phosphoinositide 3-kinases and the subsequent production of PtdIns(3,4,5)P(3) is an important cell signaling event that has been causally linked to the activation of a variety of downstream cellular processes, such as cell migration and proliferation. Although numerous proteins regulating a variety of biological pathways have been shown to bind PtdIns(3,4,5)P(3), there are no data to demonstrate multiple mechanisms for PtdIns(3,4,5)P(3) synthesis in vivo. RESULTS: In this study, we demonstrate an alternative pathway for the in vivo production of PtdIns(3,4,5)P(3) mediated by the action of murine Type Ialpha phosphatidylinositol 4-phosphate 5-kinase (Type Ialpha PIPkinase), an enzyme best characterized as regulating cellular PtdIns(4,5)P(2) levels. Analysis of this novel pathway of PtdIns(3,4,5)P(3) synthesis in cellular membranes leads us to conclude that in vivo, Type Ialpha PIPkinase also acts as a PtdIns(3,4)P(2) 5-kinase. We demonstrate for the first time that cells actually contain an endogenous PtdIns(3,4)P(2) 5-kinase, and that during oxidative stress, this enzyme is responsible for PtdIns(3,4,5)P(3) synthesis. Furthermore, we demonstrate that by upregulating the H(2)O(2)-induced PtdIns(3,4,5)P(3) levels using overexpression studies, the endogenous PtdIns(3,4)P(2) 5-kinase is likely to be Type Ialpha PIPkinase. CONCLUSIONS: We describe for the first time a novel in vivo activity for Type Ialpha PIPkinase, and a novel pathway for the in vivo synthesis of functional PtdIns(3,4,5)P(3), a key lipid second messenger regulating a number of diverse cellular processes.  相似文献   

17.
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) synthesis has been implicated in maintaining the function of the Golgi apparatus. Here we demonstrate that the inhibition of PtdIns(4,5)P(2) synthesis in vitro in response to primary alcohol treatment and the kinetics of Golgi fragmentation in vivo were very rapid and tightly coupled. Preloading Golgi membranes with short chain phosphatidic acid abrogated the alcohol-mediated inhibition of PtdIns(4,5)P(2) synthesis in vitro. We also show that fragmentation of the Golgi apparatus in response to diminished PtdIns(4,5)P(2) synthesis correlated with both the phosphorylation of a Golgi form of beta III spectrin, a PtdIns(4,5)P(2)-interacting protein, and changes in its intracellular redistribution. The data are consistent with a model suggesting that the decreased PtdIns(4,5)P(2) synthesis and the phosphorylation state of beta III spectrin modulate the structural integrity of the Golgi apparatus.  相似文献   

18.
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann‐Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4‐phosphate (PtdIns4P) countertransport cycle between Golgi‐endoplasmic reticulum (ER), as well as lysosome‐ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4‐kinases—PI4KIIα and PI4KIIIβ—which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.  相似文献   

19.
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.  相似文献   

20.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号